Transformer 论文通俗解读:FFN 中的非线性表达

本文是通俗解读Transformer 论文的FFN部分,你可以点击本文最后左下角的标签查看全部内容。

上一节介绍 FFN层时,提到了在 Transformer 架构中添加 FFN 层的一个作用:为了给神经网络增加非线性表达能力

非线性是学习神经网络时的一个基础知识。

虽然基础,但是我还是希望针对这部分内容做一个更加详细的说明,希望你可以对此有一个更深刻的认识,而不仅仅是 Transfomer 结构。

1、线性系统是什么样的?

请你先回忆一个基础知识:什么是线性函数?回忆完毕后,继续往下看。

假设有一个线性函数:y = kx + b, 这个函数画出来是下面的样子,此时我们可以说 y 和 x 是线性关系。

图片

而如果又有一个线性函数 z = hy + d,那么,我们可以推断出,变量 z 和 x 同样也是线性关系。

为什么呢? 因为你可以通过下面的变量代入变换得到:

z = hy + d  = z(kx + b) + d = zk x + zb + d = zk(x) + (zb + d)

如果令 K = zk,B = zb + d,那么 z 和 x 的关系就可以写出 z = Kx + B。

所以,z 和 x 同样是线性关系,这里就引出一个前提——

两个线性函数的叠加还是线性关系,同理,多个线性函数的叠加最终还是线性关系?

2、FFN 中的 FC 是非线性还是线性呢?

不好意思,FFN 中的全连接层(FC)本身就是一个线性系统。

为了说明这个问题,我询问了一个AI模型,让其来回答一下这个问题。

图片

AI 模型对于这类问题回答的非常好(这里贴个图你可以看一下,也省去了我打字的时间花销😂)。

甚至,你可以将两个首尾相连的全连接层看作是一个全连接层。

图片

看到这你或许对非线性有了一个更深刻的认识了吧——

事实上,神经网络中的很多基础且核心的运算,比如卷积,比如全连接(矩阵乘法),都是一种线性变换层。

如果这些层后面直接连接其他的线性变换层,那么多个线性变换层会退化成一个。

图片

因此,在这类的线性变换层后面,要添加非线性的激活函数,使得整个变换不至于是线性变换,从而使得神经网络模型可以拟合成更加复杂多变的非线性系统。

如此一来,模型就可以处理复杂的任务,而不用担心模型在数学上仅仅是一个简单的线性模型了。

在 Transformer 的 FFN 结构中,先后添加了两个 FC 层,因此,在两个 FC 中间是一定要加入非线性激活函数的,这也是为什么论文中给出的公式是下面的样子:

图片

其中的 max(0, xW1 + b1) 便是对第一个线性层施加 Relu 激活函数。

本文暂且不论 FFN 中添加 FC 的作用,你只需要了解在多个线性层中间一定要添加非线性层,来防止多个线性层叠加退化成一个线性层就可以了。

关于 FFN 中添加 FC,也就是线性层的作用,在后面的文章中会进行详细介绍。防止文章丢失,你可以点击下面连接关注我,来获取最新的文章。


我的技术专栏已经有几百位朋友加入了。

如果你也希望了解AI技术,学习AI视觉或者大语言模型,戳下面的链接加入吧,这可能是你学习路上非常重要的一次点击呀

CV视觉入门第三版(细化版)完成

我的Transformer专栏努力更新中

最后,送一句话给大家:生活不止眼前,还有诗和远方,共勉~           

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董董灿是个攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值