基于pytorch的深度学习分类算法汇总

github地址:https://github.com/ziweizhan/classification

汇总了58个当前主流的分类算法网络结构,还在不断的更新中。

可以训练,测试,操作简单。

支持的网络结构有:

MODEL_NAMES = {
    'coatnet':Coatnet,
    'swinmlp':Swinmlp,
    'swintransformer':Swintransformer,
    'mobilenetv3_small':Mobilenetv3_small,
    'mobilenetv3_large':Mobilenetv3_large,
    'ghostnet':Ghostnet,
    'alexnet': Alexnet,
    'vgg11':Vgg11,
    'vgg11_bn':Vgg11_bn,
    'vgg13':Vgg13,
    'vgg13_bn':Vgg13_bn,
    'vgg-16':Vgg16,
    'vgg-16_bn':Vgg16_bn,
    'vgg-19':Vgg19,
    'vgg-19_bn':Vgg19_bn,
    'shufflenet_v2.05': shufflenet_v2_x05,
    'shufflenet_v2.10': shufflenet_v2_x10,
    'shufflenet_v2.15': shufflenet_v2_x15,
    'shufflenet_v2.2': shufflenet_v2_x2,
    'squeezenet10':squeezenet10,
    'squeezenet11':squeezenet11,
    'nest': Nest,
    'crossformer': Crossformer,
    'regionvit': Regionvit,
    'twinssvt': Twinssvt,
    'cvt': Cvt,
    'levit': Levit,
    'pit': Pit,
    'crossvit': Crossvit,
    'cct': Cct,
    'vit': Vit,
    'deepvit': Deepvit,
    'cait': Cait,
    't2tvit':T2tvit,
    'convmixer': Convmixer,
    'mobilevit_xxs': Mobilevit_xxs,
    'mobilevit_xs': Mobilevit_xs,
    'mobilevit_s': Mobilevit_s,
    'resnext50': Resnext50,
    'resnext152': Resnext152,
    'resnext101_32x8d': Resnext101_32x8d,
    'resnext101_32x16d': Resnext101_32x16d,
    'resnext101_32x48d': Resnext101_32x48d,
    'resnext101_32x32d': Resnext101_32x32d,
    'resnet18': Resnet18,
    'resnet34': Resnet34,
    'resnet50': Resnet50,
    'resnet101': Resnet101,
    'resnet152': Resnet152,
    'densenet121': Densenet121,
    'densenet161': Densenet161,
    'densenet169': Densenet169,
    'densenet201': Densenet201,
    'moblienetv2': Mobilenetv2,
    'efficientnet-b7': Efficientnet,
    'efficientnet-b8': Efficientnet,
    'googlenet': Googlenet,
    'inceptionv3':inception3
}

可以使用flask+redis进行api接口的访问。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值