怪物坐标分析

文章讲述了通过分析角色和NPC的坐标偏移,从函数头部下断点来寻找怪物坐标遍历的代码路径。在ECX变化和内存扫描中发现NPC坐标和怪物ID,进一步追踪源代码,揭示了一个数组套链表的结构,从而得出怪物坐标的遍历公式。尽管方法各异,但只要结构对象数量一致,结果即可接受。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

怪物和NPC的坐标由于不好控制其走位,所以扫描起来也比较麻烦,所以一般来说我们都是从角色坐标入手去分析怪物坐标遍历。由于《天涯明月刀》中的角色坐标在遍历中的访问很少,并没有从直接得到角色坐标基地址的访问代码那么多,所以我们想直接返回到遍历中是很难的。于是我们尝试从某些坐标偏移所在的函数头部下断,来寻找不同的返回,从而得到怪物遍历经过的代码。

我们来到角色坐标+404偏移所在的函数处(如图)
在这里插入图片描述
我们在头部下断后,第一次断下得到的是角色的坐标地址,我们点F9发现ECX变化,而ecx+4也变为了“ManNPC”,这说明我们断到了NPC坐标所在的地址(如图)
在这里插入图片描述
执行到返回并继续分析ecx的来源,经过一层参数传递,和一层局部变量传递,得到了-10偏移(如图)
在这里插入图片描述
继续向上分析又转到了错误的代码中,于是我们通过CE对这层偏移的来源进行扫描,得到较少的结果(如图)
在这里插入图片描述

如果对怪物的属性分析稍微熟悉一点,可以观察到在这个地址上面是怪物的两个ID(如图)
在这里插入图片描述
在这里插入图片描述
用OD对这个地址下访问断点,游戏很快断下(如图)
在这里插入图片描述
访问代码较多,所以可能断的位置会不同,但是得到的结果相差不大,这里我们得到+8偏移,继续向上分析得到来源于01097B95 处的 call 00CEFE80内部,到函数内部可以得到一个数组套链表的结构,以及基地址(如图)
在这里插入图片描述
这样我们就得到了怪物坐标的遍历公式,不过由于分析的方法不同,可能每个人得到的公式会有一定的差异,不过只要结构中的对象数量一致就没有任何的问题。

<think>嗯,用户想了解游戏脚本中的图像识别怪物,这个我得先理清楚思路。首先,用户可能是游戏开发者,或者是想制作游戏外挂的?不过外挂可能涉及法律问题,得注意提醒。图像识别在游戏中的应用,常见的是自动打怪、自动任务这些脚本。 首先,我需要解释图像识别在游戏脚本中的基本概念。图像识别技术,比如OpenCV、模板匹配,或者深度学习的YOLO、SSD等。这部分需要简单介绍,但不要过于技术化,毕竟用户可能不是专业人士。 然后,具体到怪物识别,可能需要用到的方法有哪些?比如颜色特征、形状匹配、或者使用机器学习模型训练识别特定的怪物图像。这里要分步骤说明,比如图像采集、预处理、特征提取、匹配判断等。 接着,可能要考虑不同游戏的画面差异,比如2D和3D游戏的处理方式不同。光照变化、怪物动作导致的形态变化,这些都会影响识别的准确性。可能需要提到如何处理这些挑战,比如动态调整阈值,使用多帧检测等。 还要提到常用的工具和库,比如Python的OpenCV,PyAutoGUI用于控制鼠标键盘,或者更高级的框架如TensorFlow、PyTorch做深度学习模型。如果用户是开发者,可能需要代码示例,但如果是普通用户,可能不需要太深入。 另外,法律和道德问题必须强调,游戏脚本可能违反用户协议,导致封号,甚至法律风险。这部分不能遗漏,要提醒用户合法使用。 用户的需求可能不仅仅是了解技术原理,可能想自己实现一个脚本。所以需要给出一个基本的实现步骤,比如如何截取屏幕图像,处理图像,识别怪物位置,然后触发攻击动作。可能需要伪代码或者简要的步骤说明。 还要考虑性能优化,比如降低图像分辨率加快处理速度,或者设定检测区域减少计算量。同时,误识别的情况如何处理,比如设置置信度阈值,多次验证等。 最后,总结一下图像识别在游戏脚本中的应用,优缺点,以及注意事项。确保用户全面了解,同时避免鼓励非法用途。</think>游戏脚本中的图像识别怪物技术通常指通过计算机视觉自动检测并定位游戏画面中的怪物目标。以下是技术实现的核心要点: 一、基本原理 1. 图像采集:使用屏幕捕获技术(如DXGI/PyAutoGUI)实时获取游戏画面 2. 特征提取:通过OpenCV处理图像,提取颜色直方图(HSV空间)、边缘特征(Canny算法)或纹理特征 3. 识别算法: - 模板匹配(cv2.matchTemplate) - 特征点检测(SIFT/SURF) - 深度学习(YOLO/Mask R-CNN) 二、关键技术环节 1. 预处理流程: ```python # 伪代码示例 screen = capture_game_window() gray = cv2.cvtColor(screen, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5,5), 0) edged = cv2.Canny(blurred, 30, 150) ``` 2. 动态适配方案: - 多分辨率模板库 - 自适应亮度补偿(CLAHE算法) - 运动目标追踪(KCF跟踪器) 三、典型应用场景 1. 自动战斗系统:通过坐标定位触发技能施放 2. 预警机制:危险怪物血量/状态监测 3. 路径规划:规避高级怪物区域 四、挑战与对策 1. 画面干扰:叠加UI/技能特效(采用ROI区域限定) 2. 形态变化:怪物动作变形(使用时序特征分析) 3. 伪装目标:相似NPC区分(结合OCR验证名称) 五、开发注意事项 1. 合规性:多数游戏禁止自动化脚本(存在封号风险) 2. 反检测机制:需应对游戏公司的行为分析系统 3. 性能优化:保持识别延迟<100ms(GPU加速方案) 建议优先考虑基于轮廓检测的传统方案(处理速度约15ms/帧),在需要处理复杂场景时再采用深度学习方案(需GTX1060以上显卡支持)。实际开发中建议结合内存读取等混合技术提升可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

douluo998

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值