LLM记录202304-202306

本文探讨了奖励增强的强化学习方法(RLHF)、大型语言模型如LLaMA、BLOON和ChatGLM的最新进展。重点介绍了RLHF的不同实现,包括RAFT、RRHF和DPO,并讨论了它们在模型对人类反馈的对齐方面的应用。此外,还列举了一系列关于大模型能力的研究论文,重点关注了大型语言模型的推理、知识表示和训练优化方面。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>