RDKit|骨架分解与侧链分离

本文详细介绍了如何使用RDKit库进行骨架分解和侧链分离。内容包括:1. Murcko Scaffold,用于药物设计参考和合成单元分析;2. Generic Framework,通过抽象分子结构来生成通用骨架;3. rdRGroupDecomposition和ReplaceCore方法,用于高效地拆分和替换分子的侧链。通过这些工具,可以更好地理解和操作药物分子的结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、骨架分解

1.Murcko Scaffold

Murcko骨架由Murcko等人设计并用药物的形状、结构分析。他们将药物分子拆解成四种单元:环系结构(ring system)、接头(linker)、骨架(scaffold)、侧链(side chain),其中scaffold又由ring system和linker组成;scaffold和side chain又组成了药物分子。这么分解可以提供以下几点好处:

  1. Scaffold可以为药物的整体设计提供参考
  2. Ring system和linker可以为药化提供合成单元
  3. 可以通过形状的分析,评价分子库的类药程度

Rdkit中也提供了一些用于骨架和侧链分析的工具

  • 获取Murcko骨架:GetScaffoldForMol()
>>> from rdkit import Chem
>>> from rdkit.Chem import Draw
>>> from rdkit.Chem.Scaffolds import MurckoScaffold
>>> m = Chem.MolFromSmiles('O=C(NCc1cc(OC)c(O)cc1)Cc1cocc1CC')
>>> core = MurckoScaffold.GetScaffoldForMol(m)
>>> m_core = [m, core]
>>> Draw.MolsToGridImage(m_core, subImgSize=(250, 250))

1

  • 直接获取smiles的murcko骨架,并输出smiles:MurckoScaffoldSmilesFromSmiles(smiles, mol, includeChirality)
  • 同MurckoScaffoldSmiles()
>>> MurckoScaffold.MurckoScaffoldSmilesFromSmiles('O=C(NCc1cc(OC)c(O)cc1)Cc1cocc1CC')
'O=C(Cc1ccoc1)NCc1ccccc1'

2.Generic Framework

将分子以图的形式表示,对结构进行抽象,即所有的原子作为顶点,所有的键作为边,主要反映了原子间的连接属性。

  • 产生generic骨架:MakeScaffoldGeneric()
    所有重原子都以碳来代替,所有的键都以单键代替
>>> gen_mcore = map(MurckoScaffold.MakeScaffoldGeneric, m_core)
>>> Draw.MolsToGridImage(list(gen_mcore), subImgSize=(250, 250))

2

二、侧链分离

1.rdRGroupDecomposition

  • 先读进来一组分子
  • 定义一个母核,并指定侧链位置。
  • 也可以不标注侧链的序号,系统会自动生成序号
>>> import os
>>> from rdkit.Chem import rdRGroupDecomposition as rdRGD
>>> from rdkit.Chem import RDConfig
>>> fName = os.path.join(RDConfig.RDDocsDir, 'Book\\data\\s1p_chembldoc89753.txt')
>>> suppl = Chem.SmilesMolSupplier(fName, delimiter=",", smilesColumn=9, nameColumn=10)
>>> ms = [x for x in suppl if x]
>>> core = Chem.MolFromSmarts('[*:1]c1nc([*:2])on1')
>>> core

3

  • 分离侧链:rdRGD.RGroupDecompose(cores, mols, asSmiles , …)
    cores:母核
    mols:要拆解的分子
    asSmiles:返回smiles还是mol对象
  • 变量unmatched用来存放没有匹配上母核的分子
  • 变量res是一个字典的列表,每个字典对应一个分子匹配上的母核和的侧链。
>>> res, unmatched = rdRGD.RGroupDecompose([core], ms, asSmiles=True)
>>> print(len(res), len(unmatched))
>>> res[0]
40 0
{'Core': 'n1oc([*:2])nc1[*:1]',
 'R1': 'O=C(O)CCCC1NCCOc2c1cccc2[*:1]',
 'R2': 'CC(C)Oc1ccc([*:2])cc1Cl'}
  • 查看结果
>>> Chem.Draw.MolsToGridImage([ms[0], Chem.MolFromSmiles(res[0]['R1']), Chem.MolFromSmiles(res[0]['R2'])], molsPerRow=3, subImgSize=(300, 300))

在这里插入图片描述

  • 还可以直接将res结果转换成dataframe
>>> import pandas as pd
>>> df = pd.DataFrame(res)
>>> df.head()
	Core	R1	R2
0	n1oc([*:2])nc1[*:1]	O=C(O)CCCC1NCCOc2c1cccc2[*:1]	CC(C)Oc1ccc([*:2])cc1Cl
1	n1oc([*:2])nc1[*:1]	O=C(O)CCC1NCCOc2c1cccc2[*:1]	CC(C)Oc1ccc([*:2])cc1Cl
2	n1oc([*:2])nc1[*:1]	O=C(O)CCC1COc2ccc([*:1])cc2CN1	CC(C)Oc1ccc([*:2])cc1Cl
3	n1oc([*:2])nc1[*:1]	O=C(O)CCCC1NCCOc2c1cccc2[*:1]	CC(C)Oc1ncc([*:2])cc1Cl
4	n1oc([*:2])nc1[*:1]	O=C(O)CCCC1NCCOc2c1cccc2[*:1]	CC(C)Oc1ncc([*:2])cc1Cl

2.ReplaceCore

除了上述方法,还可以通过Chem.ReplaceCore分离侧链

  • 先定义一个母核
  • 查看分子是否包含母核:HasSubstructMatch(core)
core = Chem.MolFromSmiles('n1cnoc1')
ms[0].HasSubstructMatch(core)
True
  • 去除母核,得到侧链:Chem.ReplaceCore()
rs = Chem.ReplaceCore(ms[0], core)
Chem.MolToSmiles(rs)
'[1*]c1cccc2c1OCCNC2CCCC(=O)O.[2*]c1ccc(OC(C)C)c(Cl)c1'
  • 根据分子中原子序号对侧链进行编号
rs = Chem.ReplaceCore(ms[0], core, labelByIndex=True)
Chem.MolToSmiles(rs)
'[1*]c1cccc2c1OCCNC2CCCC(=O)O.[4*]c1ccc(OC(C)C)c(Cl)c1'
  • 获取分离的侧链:Chem.GetMolFrags()
res = Chem.GetMolFrags(rs, asMols=True)
Chem.MolToSmiles(res[0])
'[4*]c1ccc(OC(C)C)c(Cl)c1'

本文参考自rdkit官方文档
代码及源文件在这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值