原文地址
https://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
概念
基于经验反射率分布, 我们提出了三个有用的参数的BSSRDF 模型,模型很简单,但是经过合适的参数化比其他模型更好的匹配蛮力蒙特卡罗参考,每个反射率分布是两个指数的总和,其中指数的高度和宽度取决于表面的反照率和散射距离。我们的参数化允许与使用相同参数的基于物理的扩散模型进行直接比较.参数化基于垂直照明、漫反射表面传输(其中照明方向无关)以及散射距离的替代度量。 我们的近似值可用于渲染光线追踪和基于点的次表面散射。
1 介绍
次表面散射的建模对于渲染像皮肤,肉,水果,牛奶和果汁等半透明材质
非常重要,计算机图形研究从简单的偶极扩散模型l [Jensen et al. 2001]到量化扩散模型 [d'Eon 和 Irving 2011]和光子束扩散和漫单散射模型 [Habel et al. 2013](https://graphics.pixar.com/library/PhotonBeamDiffusion/paper.pdf),我们将介绍一种三个参数的经验模型,这个模型简单但是能更好的匹配蛮力蒙特卡罗参考,使用近似替代物理模型的原因是:
- 使用用户友好的表面反照率和散射距离代替不太直观的体积散射和吸收系数
- 内置单散射项。
- 速度更快,更简单的代码,无需查找表
- 没有特别的校正因子 κ(r) 使理论适合 Monte Carlo 参考文献 [Donner 和 Jensen 2007; 哈贝尔等人。 2013]。
- 用于重要性采样的简单分布函数
2 背景和相关工作
2.1蒙特卡洛模拟和BSSRDFs
计算次表面散射的最通用方法是将对象视为一个体积并运行蛮力蒙特卡罗模拟 [Kalos and Whitlock 1986; 王等人。1995]。 然而,这可能非常慢,特别是对于复杂的场景。
描述光如何进入物体、在内部散射,然后离开的函数是BSSRDF双向表面散射反射率分布函数。唐纳等人。 [2009] 使用蒙特卡罗粒子追踪制表了均质平面上的经验 BSSRDF 模型
。 它们代表了离开表面的光的半球分布,取决于入射光的角度、出射光的相对位置和物理参数(体积反照率、平均自由程长度、相位函数、和折射率)。 这个的表格需要几个月的时间来计算并包含大约 250MB 的数据。
2.2 基于物理的反射分布
BSSRDF 的S 通常被简化为径向对称 (1D) 漫反射分布 R,两个定向菲涅耳
传输项 Ft 和常数 C的乘积 [Jensen 等人。 2001年; d’Eon
和欧文 2011 年; 希门尼斯等人。 2015]:
S(xi, wi; xo, wo) = C Ft(xi, wi) R(|xo − xi|) Ft(xo, wo)
下图显示了各种反照率表面的反射率分布示例; 这些曲线是用蒙特卡罗模拟计算的。纵轴显示 rR(r) 而不是 R(r),因为 R(r) 总是在表面径向积分(并且在靠近 r = 0时出现尖峰)。
偶极子扩散模型 [Jensen 等人。 2001] 是一个近似值在多次散射事件后扩散的次表面散射,该模型简单,速度快,应用广泛;然而,它也过于模糊并导致蜡质外观
d’Eon and Irving [2011] 高斯和近似
光子束扩散 by Habel et al. [2013],光子束扩散模型与量化扩散一样准确,但评估速度要快得多,准确的漫射单散射模型,优雅地处理斜向折射
以上模型需要射线追踪或者分离卷积,我们的模型不需要耗时的分离计算
2.3 近似反射曲线
反射率分布表示类似于图 2 中表,例如,对于表面反照率,我们可以将反射率分布表存为距离 r 的函数0, 0.01, 0.02, . . . 1,然后在它们之间插入一个给定的表面反照率和距离
然而,我们的灵感来自于经常使用的技术用简单函数逼近复杂函数,一个很好的例子是菲涅耳反射和折射公式。 菲涅耳反射和折射可以基于物理学建模(麦克斯韦方程和能量约束)作为两项的总和,一项用于垂直和一项用于平行偏振光,但施利克[1994] 观察到所得曲线可以接近由一个简单的多项式近似,这个近似是广泛用于计算机图形学,因为它更简单,评估速度更快,并且没有明显的差异。 我们想要类似的次表面散射近似
Burley [2013; 2015]注意到漫反射的形状profile 可以很好地用两个指数函数之和除以距离
的曲线近似:
d 参数塑造曲线的高度和宽度,并且可以根据艺术偏好或者物理参数设置,使用 R(r) 的这个表达式,d 的任何正值给出的表面反照率为 1,因此 Burley 将其命名为归一化 difffusion。 通过乘以表面反照率 A 并为 d 选择一个合适的值,我们可以获得非常精确的拟合常用材料。 该模型在 Walt Disney An imation Studio 的 Hyperion 渲染器中实现。
在以下部分中,我们将简单分析如何最好地缩放和拉伸归一化扩散曲线以匹配 Monte
Carlo 参考。 在换句话说,我们确定了从物理参数到 d 的合适“转换”。 这允许使用相同的物理参数基于物理的扩散模型使用的散射距离,并促进与这些模型的直接比较
3 探照灯配置
我们首先考虑所谓的探照灯配置,其中一个聚焦光束入射到半无限均匀平坦表面下的介质 — 参见图 4。光子通过表面传输,被介质散射,最终被吸收或从介质逸回表面。 这
离开表面的光子分布形成一个反射曲线 R(r),对于正常入射的光是径向对称的或扩散传输。
在本节中,我们假设光子首先垂直向下传播垂直于表面,一个简化的假设也用于
例如 MCML 模拟包 [Wang 等人。 1995] 和其他地方。 我们还假设相位函数是各向同性的——各向异性相函数通常使用使用减少的散射系数 σ 的矩s = (1−g)σs,,但在第 8 节的未来工作中会详细介绍这一点。
3.1 蒙特卡罗参考
平均自由程:光可以在表面下方散射的大致距离
图 5 显示了表面反照率介于 0.1 和 0.9 之间、平均自由程 ℓ = 1 和各向异性 g = 0 的反射率分布 R(r)。
(这些实际上与图 2 中的数据相同,但现在有一个日志
垂直轴。)这些参考轮廓是用类似于 MCML 的蛮力蒙特卡罗模拟计算的 [Wang 等人。 1995]
是我们的近似目标曲线。表面反照率
在没有菲涅耳项的情况下计算为 A = A = R ∞ 0 R(r) 2πr dr
选择体积散射和吸收系数 σs 和 σa,使得平均自由程长度 ℓ = 1/(σs + σa) 为 1(即
α = σs, σa = 1 − σs = 1 − α) 和所需的表面反照率 A
积分 R(r) 时达到。