轻量级网络:Bottleneck结构(沙漏型结构)

Bottleneck 结构为之后的深度可分离卷积Depthwise Separable Conv打下了坚实的基础。

Bottleneck 结构

在Inception网络中为了减少参数量,我们想了很多的办法,例如:用多个小尺寸卷积代替一个大尺寸卷积; 做下面的变换:3x3 = 3x1 + 1x3,这个效果在深度较深的情况下比规整的卷积核更好 等等操作,当然也包括经典的Bottleneck结构。

Bottleneck结构就是为了降低参数量,Bottleneck 三步走是先 PW 对数据进行降维,再进行常规卷积核的卷积,最后 PW 对数据进行升维(类似于沙漏型)。我们举个例子,方便我们了解:

根据上图,我们来做个对比计算,假设输入 feature map 的维度为 256 维,要求输出维度也是 256 维。有以下两种操作:

直接使用 3x3 的卷积核。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值