基于pytorch搭建多特征LSTM时间序列预测代码

这是一个基于PyTorch的简单多特征LSTM时间序列预测代码示例。假设我们有一个时间序列数据集,它有两个特征(feature1和feature2)。

python
复制代码
import torch  
import torch.nn as nn  
import numpy as np  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import MinMaxScaler  
from sklearn.metrics import mean_squared_error  
import matplotlib.pyplot as plt  
  
# 1. 数据预处理  
# 假设我们有如下数据  
data = np.array([  
    [1, 2],  
    [2, 3],  
    [3, 4],  
    [4, 5],  
    [5, 6]  
])  
  
# 添加偏移量以提高预测的准确性  
data = data[:, :-1]  
target = data[:, -1]  
  
# 数据归一化  
scaler = MinMaxScaler()  
data = scaler.fit_transform(data)  
target = scaler.transform(target.reshape(-1, 1))  
  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)  
  
# 2. 构建模型  
class LSTM(nn.Module):  
    def __init__(self, input_size, hidden_size, output_size):  
        super(LSTM, self).__init__()  
        self.hidden_size = hidden_size  
        self.lstm = nn.LSTM(input_size, hidden_size)  
        self.linear = nn.Linear(hidden_size, output_size)    
        self.hidden = (torch.zeros(1, 1, self.hidden_size), torch.zeros(1, 1, self.hidden_size))  
    def forward(self, input):    
        lstm_out, self.hidden = self.lstm(input.view(len(input), 1, -1), self.hidden)    
        predictions = self.linear(lstm_out.view(len(input), -1))    
        return predictions[-1]    
  
input_size = X_train.shape[1]  # 特征数,这里是2,因为我们有两个特征:feature1和feature2  
hidden_size = 10  # LSTM隐藏层大小,你可以根据需要调整这个值。  
output_size = 1  # 输出维度,因为我们要预测一个值,所以这里是1。  
model = LSTM(input_size, hidden_size, output_size)  # 实例化模型  
criterion = nn.MSELoss()  # 损失函数,这里使用均方误差损失。  
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # 优化器,这里使用Adam优化器。  
  
# 3. 训练模型  
for epoch in range(500):  # 设置训练轮数,你可以根据需要调整这个值。  
    inputs = torch.from_numpy(X_train)  # 将numpy数组转换为torch张量。  
    targets = torch.from_numpy(y_train)  # 将numpy数组转换为torch张量。  
    outputs = model(inputs)  # 前向传播。  
    loss = criterion(outputs, targets)  # 计算损失。  
    optimizer.zero_grad()  # 清零梯度。  
    loss.backward()  # 反向传播。  
    optimizer.step()  # 更新权重。  
    if (epoch+1) % 50 == 0:  # 每50轮输出一次损失。  
        print('Epoch: {}/{} - Loss: {:.4f}'.format(epoch+1, 500, loss.item()))  # 输出损失。  
        mse = mean_squared_error(y_test, outputs.detach().numpy())  # 使用测试集评估模型。  
        print('MSE: {:.4f}'.format(mse))  # 输出MSE。

  • 16
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: LSTM是一种长短期记忆神经网络,可以用于时间序列预测。PM2.5是衡量空气污染水平的指标之一。LSTM预测PM2.5可以通过以下步骤实现: 1.数据准备:收集历史PM2.5数据和相关气象条件,如温度,湿度等,选用适当的特征进行预测。同时,需要对数据进行清洗和归一化。 2.建立LSTM模型:基于历史数据建立LSTM模型,通常采用类似于时序模型的方法,以时间步为单位输入数据,设置合适的网络层数和节点数,进行训练和验证。 3.预测和评估:使用训练好的模型对新的PM2.5数据进行预测,并与实际数据进行比对,计算预测误差和准确率等评估指标。 LSTM预测PM2.5具有一定的局限性,如模型泛化能力较差,对序列中的长期依赖性有一定限制。因此,需要结合实际应用情况和数据特点,选择适当的算法进行优化和改进,以提高预测精度和可靠性。 ### 回答2: 随着城市化的加速,空气污染愈发严重,其中PM2.5成为危害人体健康的重要污染物。为了更好地预测和控制PM2.5的浓度,人工智能技术被广泛应用。其中,LSTM(Long Short-Term Memory)是一种能够对序列数据进行处理的循环神经网络模型,被广泛应用于时间序列预测领域。下面将从数据预处理、模型构建和实验结果三个方面简要讲解LSTM预测PM2.5的方法。 首先,数据预处理阶段非常重要。PM2.5数据通常具有周期性和随机性,因此需要通过数据平滑和差分等方法来处理数据。同时,还需要对数据进行归一化处理,将其缩放到0到1之间。 其次,模型构建阶段是实现LSTM预测PM2.5的关键步骤。在构建模型时,需要确定LSTM模型中神经网络的参数,并进行特征选择,确定哪些特征对PM2.5预测更为重要。同时,可以通过加入额外的特征,例如气象数据和人口密度等,来进一步提高预测精度。 最后,进行实验并对预测结果进行评估。实验中需要将数据集分为训练集、验证集和测试集,并对模型进行训练、超参数调整和模型评估。评估方法可以采用均方根误差(RMSE)或平均绝对误差(MAE)等统计方法来衡量预测结果的准确性。 总之,LSTM预测PM2.5是一项较为复杂的任务,需要进行细致的数据预处理、特征选择和模型构建。在未来,相信这一方法将在城市空气污染治理中发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字化信息化智能化解决方案

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值