PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)

39 篇文章 204 订阅
36 篇文章 147 订阅

I. 前言

在前面的一篇文章PyTorch搭建LSTM实现时间序列预测(负荷预测)中,我们利用LSTM实现了负荷预测,但我们只是简单利用负荷预测负荷,并没有利用到其他一些环境变量,比如温度、湿度等。

本篇文章主要考虑用PyTorch搭建LSTM实现多变量时间序列预测。

系列文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测
  4. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  5. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  7. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  8. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  9. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  10. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  11. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
  12. PyTorch-LSTM时间序列预测中如何预测真正的未来值
  13. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  14. PyTorch搭建ANN实现时间序列预测(风速预测)
  15. PyTorch搭建CNN实现时间序列预测(风速预测)
  16. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  17. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
  18. PyTorch时间序列预测系列文章总结(代码使用方法)
  19. TensorFlow搭建LSTM实现时间序列预测(负荷预测)
  20. TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
  21. TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
  22. TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  23. TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  24. TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  25. TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  26. TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  27. TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  28. TensorFlow搭建ANN实现时间序列预测(风速预测)
  29. TensorFlow搭建CNN实现时间序列预测(风速预测)
  30. TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  31. PyG搭建图神经网络实现多变量输入多变量输出时间序列预测
  32. PyTorch搭建GNN-LSTM和LSTM-GNN模型实现多变量输入多变量输出时间序列预测
  33. PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测
  34. 时序预测中Attention机制是否真的有效?盘点LSTM/RNN中24种Attention机制+效果对比
  35. 详解Transformer在时序预测中的Encoder和Decoder过程:以负荷预测为例
  36. (PyTorch)TCN和RNN/LSTM/GRU结合实现时间序列预测
  37. PyTorch搭建Informer实现长序列时间序列预测
  38. PyTorch搭建Autoformer实现长序列时间序列预测

II. 数据处理

数据集为某个地区某段时间内的电力负荷数据,除了负荷以外,还包括温度、湿度等信息。

本文中,我们根据前24个时刻的负荷以及该时刻的环境变量来预测下一时刻的负荷。最终得到了batch_size=B的数据集Dtr、Val以及Dte,Dtr为训练集,Val为验证集,Dte为测试集。

任意输出Dte中的一条数据:

[(tensor([[0.3513, 0.0000, 0.9091, 0.0000, 0.6667, 0.3023, 0.2439],
        [0.3333, 0.0000, 0.9091, 0.0435, 0.6667, 0.3023, 0.2439],
        [0.3396, 0.0000, 0.9091, 0.0870, 0.6667, 0.3023, 0.2439],
        [0.3427, 0.0000, 0.9091, 0.1304, 0.6667, 0.3023, 0.2439],
        [0.3838, 0.0000, 0.9091, 0.1739, 0.6667, 0.3023, 0.2439],
        [0.3700, 0.0000, 0.9091, 0.2174, 0.6667, 0.3023, 0.2439],
        [0.4288, 0.0000, 0.9091, 0.2609, 0.6667, 0.3023, 0.2439],
        [0.4474, 0.0000, 0.9091, 0.3043, 0.6667, 0.3023, 0.2439],
        [0.4406, 0.0000, 0.9091, 0.3478, 0.6667, 0.3023, 0.2439],
        [0.4657, 0.0000, 0.9091, 0.3913, 0.6667, 0.3023, 0.2439],
        [0.4540, 0.0000, 0.9091, 0.4348, 0.6667, 0.3023, 0.2439],
        [0.4939, 0.0000, 0.9091, 0.4783, 0.6667, 0.3023, 0.2439],
        [0.4328, 0.0000, 0.9091, 0.5217, 0.6667, 0.3023, 0.2439],
        [0.4238, 0.0000, 0.9091, 0.5652, 0.6667, 0.3023, 0.2439],
        [0.4779, 0.0000, 0.9091, 0.6087, 0.6667, 0.3023, 0.2439],
        [0.4591, 0.0000, 0.9091, 0.6522, 0.6667, 0.3023, 0.2439],
        [0.4651, 0.0000, 0.9091, 0.6957, 0.6667, 0.3023, 0.2439],
        [0.5102, 0.0000, 0.9091, 0.7391, 0.6667, 0.3023, 0.2439],
        [0.5067, 0.0000, 0.9091, 0.7826, 0.6667, 0.3023, 0.2439],
        [0.4635, 0.0000, 0.9091, 0.8261, 0.6667, 0.3023, 0.2439],
        [0.4224, 0.0000, 0.9091, 0.8696, 0.6667, 0.3023, 0.2439],
        [0.3796, 0.0000, 0.9091, 0.9130, 0.6667, 0.3023, 0.2439],
        [0.3292, 0.0000, 0.9091, 0.9565, 0.6667, 0.3023, 0.2439],
        [0.2940, 0.0000, 0.9091, 1.0000, 0.6667, 0.3023, 0.2439]]), tensor([0.3675]))]

每一行对应一个时刻点的负荷以及环境变量,此时input_size=7。

III. LSTM模型

这里采用了深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中的模型:

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 1 # 单向LSTM
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
        self.linear = nn.Linear(self.hidden_size, self.output_size)

    def forward(self, input_seq):
        batch_size, seq_len = input_seq.shape[0], input_seq.shape[1]
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0)) # output(5, 30, 64)
        pred = self.linear(output)  # (5, 30, 1)
        pred = pred[:, -1, :]  # (5, 1)
        return pred

IV. 训练/测试

简单训练了30轮,MAPE为6.01%:
在这里插入图片描述

V. 源码及数据

后面将陆续公开~

  • 39
    点赞
  • 296
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 89
    评论
下面是一个使用PyTorch搭建LSTM进行多变量输入多变量输出时间序列预测的示例代码,其中包含数据预处理、模型搭建、训练和预测部分。 首先,假设我们有一个包含多个变量的时间序列数据集,每个变量都有多个时间步。我们需要将数据集分成训练集和测试集,并对数据进行标准化处理,这里使用scikit-learn库中的MinMaxScaler进行归一化操作。 ```python import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler # 读取数据 data = pd.read_csv('data.csv', header=None) data = data.values # 分割数据集 train_size = int(len(data) * 0.8) train_data = data[:train_size] test_data = data[train_size:] # 标准化数据 scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) ``` 接下来,我们需要将数据转换为输入输出对的形式,其中每个样本的输入包含多个时间步的多个变量,输出为多个时间步的多个变量。我们可以定义一个函数来实现这个转换过程。 ```python def create_dataset(dataset, lookback=1, lookahead=1): X, Y = [], [] for i in range(len(dataset)-lookback-lookahead+1): X.append(dataset[i:(i+lookback), :]) Y.append(dataset[(i+lookback):(i+lookback+lookahead), :]) return np.array(X), np.array(Y) # 转换数据 lookback = 10 lookahead = 5 trainX, trainY = create_dataset(train_data, lookback, lookahead) testX, testY = create_dataset(test_data, lookback, lookahead) ``` 接下来,我们可以使用PyTorch搭建LSTM模型。这里使用两层LSTM,每层有64个隐藏单元。注意,输入和输出的形状需要与数据集的形状相匹配。 ```python import torch import torch.nn as nn class LSTM(nn.Module): def __init__(self, input_size, output_size, hidden_size, num_layers): super().__init__() self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): out, _ = self.lstm(x) out = self.fc(out[:, -1, :]) return out # 定义模型 input_size = trainX.shape[-1] output_size = trainY.shape[-1] hidden_size = 64 num_layers = 2 model = LSTM(input_size, output_size, hidden_size, num_layers) ``` 然后,我们需要定义损失函数和优化器。这里使用均方误差损失函数和Adam优化器。 ```python criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) ``` 现在,我们可以开始训练模型了。训练过程中,我们使用批量梯度下降来更新模型参数。在每个epoch结束时,我们对模型在测试集上的表现进行评估。 ```python # 训练模型 num_epochs = 100 batch_size = 64 train_loss = [] test_loss = [] for epoch in range(num_epochs): # 训练模型 model.train() for i in range(0, len(trainX), batch_size): optimizer.zero_grad() inputs = torch.tensor(trainX[i:i+batch_size]).float() targets = torch.tensor(trainY[i:i+batch_size]).float() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss.append(loss.item()) # 测试模型 model.eval() with torch.no_grad(): inputs = torch.tensor(testX).float() targets = torch.tensor(testY).float() outputs = model(inputs) loss = criterion(outputs, targets) test_loss.append(loss.item()) # 打印损失 print('Epoch [{}/{}], Train Loss: {:.4f}, Test Loss: {:.4f}' .format(epoch+1, num_epochs, train_loss[-1], test_loss[-1])) ``` 最后,我们可以使用训练好的模型进行预测。注意,预测过程中需要将标准化后的输出重新还原为原始数据。 ```python # 预测模型 model.eval() with torch.no_grad(): inputs = torch.tensor(testX).float() outputs = model(inputs) preds = scaler.inverse_transform(outputs.numpy()) ``` 这就是使用PyTorch搭建LSTM进行多变量输入多变量输出时间序列预测的完整过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 89
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值