PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)

39 篇文章 201 订阅
36 篇文章 145 订阅

I. 前言

前面已经写了很多关于时间序列预测的文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测
  4. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  5. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  7. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  8. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  9. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  10. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  11. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
  12. PyTorch-LSTM时间序列预测中如何预测真正的未来值
  13. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  14. PyTorch搭建ANN实现时间序列预测(风速预测)
  15. PyTorch搭建CNN实现时间序列预测(风速预测)
  16. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  17. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
  18. PyTorch时间序列预测系列文章总结(代码使用方法)
  19. TensorFlow搭建LSTM实现时间序列预测(负荷预测)
  20. TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
  21. TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
  22. TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  23. TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  24. TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  25. TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  26. TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  27. TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  28. TensorFlow搭建ANN实现时间序列预测(风速预测)
  29. TensorFlow搭建CNN实现时间序列预测(风速预测)
  30. TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  31. PyG搭建图神经网络实现多变量输入多变量输出时间序列预测
  32. PyTorch搭建GNN-LSTM和LSTM-GNN模型实现多变量输入多变量输出时间序列预测
  33. PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测
  34. 时序预测中Attention机制是否真的有效?盘点LSTM/RNN中24种Attention机制+效果对比
  35. 详解Transformer在时序预测中的Encoder和Decoder过程:以负荷预测为例
  36. (PyTorch)TCN和RNN/LSTM/GRU结合实现时间序列预测
  37. PyTorch搭建Informer实现长序列时间序列预测
  38. PyTorch搭建Autoformer实现长序列时间序列预测

上面所有文章一共采用了LSTM、ANN以及CNN三种模型来分别进行时间序列预测。众所周知,CNN提取特征的能力非常强,因此现在不少论文将CNN和LSTM结合起来进行时间序列预测。本文将利用PyTorch来搭建一个简单的CNN-LSTM混合模型实现负荷预测。

II. CNN-LSTM

CNN-LSTM模型搭建如下:

class CNN_LSTM(nn.Module):
    def __init__(self, args):
        super(CNN_LSTM, self).__init__()
        self.args = args
        self.relu = nn.ReLU(inplace=True)
        # (batch_size=30, seq_len=24, input_size=7) ---> permute(0, 2, 1)
        # (30, 7, 24)
        self.conv = nn.Sequential(
            nn.Conv1d(in_channels=args.in_channels, out_channels=args.out_channels, kernel_size=3),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=1)
        )
        # (batch_size=30, out_channels=32, seq_len-4=20) ---> permute(0, 2, 1)
        # (30, 20, 32)
        self.lstm = nn.LSTM(input_size=args.out_channels, hidden_size=args.hidden_size,
                            num_layers=args.num_layers, batch_first=True)
        self.fc = nn.Linear(args.hidden_size, args.output_size)

    def forward(self, x):
        x = x.permute(0, 2, 1)
        x = self.conv(x)
        x = x.permute(0, 2, 1)
        x, _ = self.lstm(x)
        x = self.fc(x)
        x = x[:, -1, :]

        return x

可以看到,该CNN-LSTM由一层一维卷积+LSTM组成。

通过PyTorch搭建CNN实现时间序列预测(风速预测)我们知道,一维卷积的原始定义如下:

nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

本文模型的一维卷积定义:

nn.Conv1d(in_channels=args.in_channels, out_channels=args.out_channels, kernel_size=3)

这里in_channels的概念相当于自然语言处理中的embedding,因此输入通道数为7,表示负荷+其他6个环境变量;out_channels的可以随意设置,本文设置为32;kernel_size设置为3。

PyTorch中一维卷积的输入尺寸为:

input(batch_size, input_size, seq_len)=(30, 7, 24)

而经过数据处理后得到的数据维度为:

input(batch_size, seq_len, input_size)=(30, 24, 7)

因此,我们需要进行维度交换:

x = x.permute(0, 2, 1)

交换后的输入数据将符合CNN的输入。

一维卷积中卷积操作是针对seq_len维度进行的,也就是(30, 7, 24)中的最后一个维度。因此,经过:

nn.Conv1d(in_channels=args.in_channels, out_channels=args.out_channels, kernel_size=3)

后,数据维度将变为:

(30, 32, 24-3+1)=(30, 32, 22)

第一维度的batch_size不变,第二维度的input_size将由in_channels=7变成out_channels=32,第三维度进行卷积变成22。

然后经过一个最大池化变成:

(30, 32, 22-3+1)=(30, 32, 20)

此时的(30, 32, 20)将作为LSTM的输入。由于在LSTM中我们设置了batch_first=True,因此LSTM能够接收的输入维度为:

input(batch_size, seq_len, input_size)

而经卷积池化后得到的数据维度为:

input(batch_size=30, input_size=32, seq_len=20)

因此,同样需要进行维度交换:

x = x.permute(0, 2, 1)

然后就是比较常规的LSTM输入输出的,不再细说。

因此,完整的forward函数如下所示:

def forward(self, x):
    x = x.permute(0, 2, 1)
    x = self.conv(x)
    x = x.permute(0, 2, 1)
    x, _ = self.lstm(x)
    x = self.fc(x)
    x = x[:, -1, :]

    return x

III. 代码实现

3.1 数据处理

我们根据前24个时刻的负荷以及该时刻的环境变量来预测接下来4个时刻的负荷,这里采用了直接多输出策略,调整output_size即可调整输出步长。

3.2 模型训练/测试

和前文一致。

3.3 实验结果

简单训练30轮,前24个时刻预测未来4个时刻,MAPE为6.88%:
在这里插入图片描述

IV. 源码及数据

后面将陆续公开~

  • 46
    点赞
  • 306
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 17
    评论
PyTorch是一个流行的深度学习框架,它提供了强大的工具来构建和训练各种神经网络模型,包括LSTM模型用于时间序列预测。在PyTorch中,我们可以使用torch.nn模块来构建LSTM模型。 以下是一个简单的示例代码,展示了如何使用PyTorch中的LSTM模型进行时间序列预测: ```python import torch import torch.nn as nn # 定义LSTM模型 class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.lstm = nn.LSTM(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input): output, _ = self.lstm(input) output = self.fc(output[:, -1, :]) return output # 定义输入数据 input_size = 1 hidden_size = 64 output_size = 1 seq_len = 10 batch_size = 32 # 创建LSTM模型实例 model = LSTMModel(input_size, hidden_size, output_size) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 for epoch in range(num_epochs): # 前向传播 output = model(input) loss = criterion(output, target) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 使用训练好的模型进行预测 predicted = model(input) ``` 这是一个简单的LSTM模型示例,你可以根据自己的需求调整模型的结构和参数。注意,这只是一个示例,实际应用中可能需要根据具体问题进行更多的调整和改进。 参考文献: :https://github.com/Tuniverj/Pytorch-lstm-forecast<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [TensorFlow搭建CNN-LSTM混合模型实现变量步长时间序列预测负荷预测)](https://blog.csdn.net/Cyril_KI/article/details/126596555)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* [基于pytorch搭建多特征LSTM时间序列预测代码详细解读(附完整代码)](https://blog.csdn.net/hardworking_T/article/details/126673957)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值