StableDiffusionDepth2ImgPipeline允许传递文本提示和初始图像,以调节新图像的生成。此外,还可以传递depth_map以保留图像结构。如果没有提供depth_map,则管道通过集成的深度估计模型自动预测深度。
# 以下代码为程序运行进行设置
import os os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" mport torch from diffusers import StableDiffusionDepth2ImgPipeline from diffusers.utils import load_image, make_image_grid
# 以下代码加载StableDiffusionDepth2ImgPipeline并创建实例
pipeline = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
# 以下代码加载原始图片
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
init_image = load_image(url)
# 以下代码由提示词及原始图片生成图片
prompt = "two tigers"
negative_prompt = "bad, deformed, ugly, bad anatomy"
image = pipeline(prompt=prompt, image=init_image, negative_prompt=negative_prompt, strength=0.7).images[0]
image.show()
以下是原始图片
以下是由提示词并分析原始图片的深度生成的图片
AIGC应用44