nvdiffrec:Extracting Triangular 3D Models, Materials, and Lighting From Images

NVIDIA的nvdiffrec技术通过端到端训练,使用神经网络从多视图图像中重建物体的3D几何形状、纹理和光照。该模型为3D编辑提供了可能性,如材质修改和光照设置。与GET3D类似,它通过比较生成的2D照片与真实照片的误差进行改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 论文主页 https://nvlabs.github.io/nvdiffrec/
  • git主页 https://github.com/NVlabs/nvdiffrec
  • 新闻报道 https://redian.news/wxnews/36324
  • YuQiao0303 读后感 https://blog.csdn.net/qq_34342853/article/details/125622816
  • b站演示效果视频 https://www.bilibili.com/video/BV1Pd4y1q7h4/?from=seopage&vd_source=8c65e627887319909a0cd8f8582c7cfa
  • CVPR2022 oral https://www.youtube.com/watch?v=whXTP08XMYA 16分30秒开始

Nvidia展示了合成的爵士乐演奏动画技术,名为NVIDIA 3D MoMa,其底层原理来自论文"Extracting Triangular 3D Models, Materials, and Lighting From Images",模型名为nvdiffrec。

oral笔记

nvdiffrec要解决的问题是,输入是物体在各个角度的图片multiview,要求模型能输出它的三维重建,包括几何形状、纹理颜色、光照。

nvidiffrec也是GET3D的灵感来源。

请添加图片描述

该模型采用了端到端的训练。首先用geometry神经网络重建mesh,再用texture神经网络预测模型的纹理ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值