[python学习] 专题八.多线程编程之thread和threading

        就个人而言,学了这么多年的课程又写了这么多年的程序,虽然没有涉及到企业级的项目,但还是体会到了有几个知识点是非常重要的,包括:面向对象的思想、如何架构一个项目、设计模式来具体解决问题、应用机器学习和深度学习的方法,当然也包括我这篇文章的内容——多线程和并行化处理数据。        这篇文章主要是参考Wesley J. Chun的《Python核心编程(第二版)》书籍多线程部分,并结合我以前的一些实例进行简单分析。尤其是在大数据、Hadoop\Spark、分布式开发流行的今天,这些基础同样很重要。希望对你有所帮助吧!
        PS:推荐大家阅读《Python核心编程》和《Python基础教程》两本书~
        强推:http://www.cnblogs.com/huxi/archive/2010/06/26/1765808.html

 

一. 线程和进程的概念

    1.为什么引入多线程编程?
        在多线程(Multithreaded,MT)编程出现之前,电脑程序的运行由一个执行序列组成,执行序列按顺序在主机的中央处理器CPU中运行。即使整个程序由多个相互独立无关的子任务组成,程序都会顺序执行。
        由于并行处理可以大幅度地提升整个任务的效率,故引入多线程编程。
        多线程中任务具有以下特点:
        (1) 这些任务的本质是异步的,需要有多个并发事务;
        (2) 各个事务的运行顺序可以是不确定的、随机的、不可预测的。
        这样的编程任务可以分成多个执行流,每个流都有一个要完成的目标。再根据不同的应用,这些子任务可能都要计算出一个中间结果,用于合并得到最后的结果。

        2.什么是进程?
        计算机程序只不过是磁盘中可执行的二进制(或其他类型)的数据。它们只有在被读取到内存中,被操作系统调用时才开始它们的生命周期。
        进程(亦称为重量级进程)是程序的一次执行。每个进程都有自己的地址空间、内存、数据栈及其他记录其运行轨迹的辅助数据。操作系统管理在其上运行所有的进程,并为这些进程公平分配时间、进程也可以通过fork和spawn操作来完成其他的任务。
        不过进程有自己的内存空间,数据栈等,所以只能使用进程间通讯(interprocess communication, IPC),而不能直接共享信息。

        3.什么是线程?
        线程(亦称为轻量级进程)跟进程有些相似,不同的是:所有的线程运行在同一个进程中,共享相同的运行环境。它们可以被想象成是在主进程或“主线程”中并行运行的“迷你进程”。
        线程有开始,顺序执行和结束三部分。它有一个自己的指令指针,记录自己运行到什么地方。线程的运行可能被抢占(中断)或暂时的被挂起(睡眠),让其他线程运行,这叫做让步。
        一个进程中的各个线程之间共享同一片数据空间,所以线程之间可以比进程之间更方便地共享数据以及相互通讯。线程一般都是并发执行的,正是由于这种并行和数据共享的机制使得多个任务的合作变成可能。
        实际上,在单CPU的系统中,真正的并发是不可能的,每个线程会被安排成每次只运行一小会,然后就把CPU让出来,让其他的线程去运行。在进程的整个运行过程中,每个线程都只做自己的事,在需要的时候跟其他的线程共享运行的结果。
        当然,这样的共享并不是完全没有危险的。如果多个线程共同访问同一片数据,则由于数据访问的顺序不同,有可能导致数据结果的不一致的问题,即竞态条件(race condition)。同样,大多数线程库都带有一些列的同步原语,来控制线程的执行和数据的访问。
        另一个需要注意的是由于有的函数会在完成之前阻塞住,在没有特别为多线程做修改的情况下,这种“贪婪”的函数会让CPU的时间分配有所倾斜,导致各个线程分配到的运行时间可能不尽相同,不尽公平。

        4.简述进程和线程的区别
        参考下面三篇文章:
        进程和线程关系及区别 - yaosiming2011
        进程与线程的区别 - flashsky
        应届生经典面试题:说说进程与线程的区别与联系 - way_testlife
 

二. Python线程和全局解释器锁

       1.全局解释器锁(GIL)
        Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。Python在设置之初就考虑到要在主循环中,同时只有一个线程在执行,就像单CPU的系统中运行多个进程那样,内存中可以存放多个程序,但任意时刻,只有一个程序在CPU中运行。同样,虽然Python解释器可以“运行”多个线程,但任意时刻,只有一个线程在解释器中运行。
        对Python虚拟机的访问由全局解释器锁(global interpreter lock,GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。在多线程环境中,Python虚拟机按一下方式执行:
        (1) 设置GIL
        (2) 切换到一个线程去运行
        (3) 运行:
                 a. 指定数量的字节码的指令,或者
                 b. 线程主动让出控制(可以调用time.sleep(0))
        (4) 把线程设置为睡眠状态
        (5) 解锁GIL
        (6) 再次重复以上所有步骤

        在调用外部代码(如C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于这期间没有Python的字节码被运行,所以不会做线程切换)。编写扩展的程序员可以主动解锁GIL。不过Python开发人员则不用担心在这些情况下你的Python代码会被锁住。
        对源代码,解释器主循环和GIL感兴趣的人,可以看看Python/ceval.c文件。

        2.退出线程
        当一个线程结束计算,它就退出了。线程可以调用thread.exit()之类的退出函数,也可以使用Python退出进程的标准方法,如sys.exit()或抛出一个SystemExit异常等。不过,你不可以直接杀掉Kill一个线程。
        后面会讲述两个与线程相关的模块,在这两个模块中,该书中不建议使用thread模块。主要原因是当主线程退出的时候,其他所有线程没有被清除就退出了。而threading模块就能确保所有“重要的”子线程都退出后,进程才会结束。
        主线程应该是一个好的管理者,它要了解每个线程都要做些什么事,线程都需要什么数据和什么参数,以及在线程结束的时候,它们都提供了什么结果。这样,主线程就可以把各个线程的结果组成一个有意义的最后结果。
        在Python2.7交互式解释器中导入import thread没有报错即表示线程可用。

        3.没有线程的例子
        使用time.sleep()函数来演示线程的工作,这个例子主要为后面线程做对比。time.sleep()需要一个浮点型的参数,来指定“睡眠”的时间(单位秒)。这就相当于程序的运行会被挂起指定的时间。
        代码解释:两个计时器,loop0睡眠4秒,loop1()睡眠2秒,它们是在一个进程或者线程中,顺序地执行loop0()和loop1(),那总运行时间为6秒。有可能启动过程中会再花些时间。

from time import sleep, ctime

def loop0():
    print 'Start loop 0 at:', ctime()
    sleep(4)
    print 'Loop 0 done at:', ctime()

def loop1():
    print 'Start loop 1 at:', ctime()
    sleep(2)
    print 'Loop 1 done at:', ctime()

def main():
    print 'Starting at:', ctime()
    loop0()
    loop1()
    print 'All done at:', ctime()

if __name__ == '__main__':
    main()

        代码的运行结果如下图所示,它将和后面的并行代码做对比。

        4.避免使用thread模块
        Python提供了几个用于多线程编程的模块,包括thread、threading和Queue等。
        (1) thread模块: 允许程序员创建和管理线程,它提供了基本的线程和锁的支持。
        (2) threading模块: 允许程序员创建和管理线程,它提供了更高级别,更强的线程管理的功能。
        (3) Queue模块: 允许用户创建一个可用于多个线程间共享数据的队列数据结构。

        下面简单分析为什么需要避免使用thread模块?
        (1) 首先更高级别的threading模块更为先进,对线程的支持更为完善,而且使用thread模块里的属性有可能会与threading出现冲突。
        (2) 其次,低级别的thread模块的同步原语很少(实际只有一个),而threading模块则有很多。
        (3) 另一个原因是thread对你的进程什么时候应该结束完全没有控制,当主线程结束时,所有的线程都会被强制结束掉,没有警告也不会有正常的清除工作。而threading模块能确保重要的子线程退出后进程才退出。
        当然,为了你更好的理解线程,还是会对thread进行讲解。但是我们只建议那些有经验的专家想访问线程的底层结构时,才使用thread模块。而如果可以,你的第一个线程程序应尽可能使用threading等高级别的模块。
            
   

三. thread模块

       1.基础知识
        首先来看看thread模块都提供了些什么。除了产生线程外,thread模块也提供了基本的同步数据结构锁对象(lock object,也叫原语锁、简单锁、互斥锁、互斥量、二值信号量)。同步原语与线程的管理是密不可分的。
       常用的线程模块函数

模块函数

描述

start_new_thread(function, args kwargs=None)

产生一个新线程,在新线程中用指定的参数和可选的kwargs来调用该函数

allocate_lock()

分配一个LockType类型的锁对象

exit()

让线程退出

         LockType类型锁对象方

类型锁对象方法

描述

acquire(wait=None)

尝试获取锁对象

locked()

如果获取了锁对象返回True,否则返回False

release()

释放锁

        start_new_thread()函数是thread模块的一个关键函数,它的语法和内建的apply()函数一样,其参数为:函数,函数的参数以及可选的关键字的参数。不同的是,函数不是在主线程里运行,而是产生一个新的线程来运行这个函数。

        2.Thread模块实现代码
        现在实现一个线程的代码,与前面没有线程总运行时间为6秒的进行对比。

import thread
from time import sleep, ctime

def loop0():
    print 'Start loop 0 at:', ctime()
    sleep(4)
    print 'Loop 0 done at:', ctime()

def loop1():
    print 'Start loop 1 at:', ctime()
    sleep(2)
    print 'Loop 1 done at:', ctime()

def main():
    try:
        print 'Starting at:', ctime()
        thread.start_new_thread(loop0, ())
        thread.start_new_thread(loop1, ())
        sleep(6)
        print 'All done at:', ctime()
    except Exception,e:      
        print 'Error:',e  
    finally:    
        print 'END\n'  

if __name__ == '__main__':
    main()

        代码解释:
        使用thread模块提供简单的额多线程机制。loop0和loop1并发地被执行(显然,短的那个先结束),总的运行时间为最慢的那个线程的运行时间,而不是所有的线程的运行时间之和。start_new_thread()要求一定要有前两个参数,即使运行的函数不要参数,也要传一个空的元组。
        由于采用Python IDLE运行总是报错Runtime,而且已经设置了sleep(6)。运行一个线程勉强能运行,两个线程无论是thread或threading都报错,估计环境配置问题。

        最后采用Cygwin Terminal模拟Linux下运行程序。可以发现loop1和loop0是并发执行的,其中loop1先结束运行2秒,而loop0运行4秒。
        同时程序主函数中多了个sleep(6),为什么要加这一句话呢?
        因为如果我们没有让主线程停下来,那主线程就会运行下一条语句,显示“All done”,然后就关闭运行着loop0和loop1的两个线程,退出了。
        我们没有写让主线程停下来等所有子线程结束后再继续运行的代码,这就是前面所说的需要同步的原因。在这里,我们使用sleep(6)作为同步机制。设置6秒,两个线程一个4秒(53-57),一个2秒(53-55),在主线程等待6秒(53-59)后应该已经结束了。

        cygwin需要用到的常见用法包括,也可以安装VIM编辑器:
                   cd c:            进入 'c:' 目录,空格用'\ '转义字符
                   pwd               显示工作路径
                     ls               查看目录中的文件
                   file test.py                 查看文件内容
                   python test.py          运行python程序

        配置方法见:http://blog.sina.com.cn/s/blog_691ebcfc0101lgme.html
        下载地址见:http://pan.baidu.com/s/1jGYEtro

        3.线程加锁方法
        那么,有什么好的管理线程的方法呢?而不是在主线程里做个额外的延时6秒操作。因为总的运行时间并不比单线程的代码少;而且使用sleep()函数做线程的同步操作是不可靠的;如果循环的执行时间不能事先确定的话,这可能会造成主线程过早或过晚的退出。
        这就需要引入锁的概念。下面代码执行loop函数,与前面代码的区别是不用为线程什么时候结束再做额外的等待了。使用锁之后,可以在两个线程都退出后,马上退出。

#coding=utf-8
import thread 
from time import sleep, ctime 
 
loops = [4,2]                           #等待时间

#锁序号 等待时间 锁对象
def loop(nloop, nsec, lock):
    print 'start loop', nloop, 'at:', ctime() 
    sleep(nsec) 
    print 'loop', nloop, 'done at:', ctime()
    lock.release()                      #解锁                  
 
def main():
    print 'starting at:', ctime()
    locks =[]
    nloops = range(len(loops))          #以loops数组创建列表并赋值给nloops
         
    for i in nloops:
        lock = thread.allocate_lock()   #创建锁对象
        lock.acquire()                  #获取锁对象 加锁
        locks.append(lock)              #追加到locks[]数组中 

    #执行多线程 (函数名,函数参数)
    for i in nloops:
        thread.start_new_thread(loop,(i,loops[i],locks[i]))

    #循环等待顺序检查每个所都被解锁才停止    
    for i in nloops:
        while locks[i].locked():
            pass

    print 'all end:', ctime() 

if __name__ == '__main__': 
    main()

      运行结果如下:
      Starting at: Tue Dec  8 21:57:56 2015
      Start loop 0 at: Tue Dec  8 21:57:56 2015
      Start loop 1 at: Tue Dec  8 21:57:56 2015
      Loop 1 done at: Tue Dec  8 21:57:58 2015
      Loop 0 done at: Tue Dec  8 21:58:00 2015
      All end: Tue Dec  8 21:58:00 2015
        我们在函数中记录下循环的号码和睡眠的时间,同时每个线程都会被分配一个事先已经获得的锁,在sleep()的时间到了之后就释放相应的锁以通知住线程,这个线程已经结束了。
        (1) loops[4, 2]定义睡眠时间 nloops=range(len(loops))创建列表[0, 1] 号码;
        (2) 调用thread.allocate_lock()函数创建一个锁的列表,并分别调用各个锁的acquire()函数获得锁对象。获得锁表示“把锁锁上”,并放到锁列表locks中;
        (3) 再循环创建线程,调用thread.start_new_thread(loop,(i,loops[i],locks[i]))。参数对应线程循环号、睡眠时间和锁。
        (4) 在线程结束时,需要做解锁操作,调用lock.release()函数;
        (5) 最后一个循环是坐在那一直等待(达到暂停主线程的目的),直到两个锁都被解锁才继续运行。它是顺序检查每个锁,主线程需不停地对所有锁进行检查直到都释放。

         为什么我们不在创建锁的循环里创建线程呢?一方面是想实现线程的同步,所以要让“所有的马同时冲出栅栏”;另外获取锁要花些时间,如果线程退出太快,可能导致还没有获得锁,线程就已经结束了。
         最后再强调下,thread模块仅仅了解就行,你应该使用更高级别的threading等。
 

四. threading模块

        threading模块不仅提供了Thread类,还提供了各种非常好用的同步机制。如下表列出了threading模块里所有的对象。

threading模块对象

描述

Thread

表示一个线程的执行的对象

Lock

锁原语对象(跟thread模块里的锁对象相同)

RLock

可重入锁对象。使单线程可以再次获得已经获得了的锁(递归锁定)

Condition

条件变量对象能让一个线程停下来,等待其他线程满足了某个“条件”。如状态的改变或值的改变

Event

通用的条件变量。多个线程可以等待某个时间的发生,在事件发生后,所有的线程都被激活

Semaphore

为等待锁的线程提供一个类似“等候室”的结构

BoundedSemaphore

与Semaphore类似,只是它不允许超过初始值

Timer

与thread类似,只是它要等待一段时间后才开始运行

        1.守护线程
        其中thread模块需要避免的一个原因是:它不支持守护线程。当主线程退出时,所有的子线程不论它们是否还在工作,都会被强行退出。有时我们并不期望这种行为,这就引入了守护线程的概念。
        Threading模块支持守护线程,它们工作流程如下:守护线程一般是一个等待客户请求的服务器,如果没有客户提出请求,它就在那等着。如果你设定一个线程为守护线程,就表示你在说这个线程是不重要的,在进程退出时,不用等待这个线程退出,正如网络编程中服务器线程运行在一个无限循环中,一般不会退出的。
        如果你的主线程要退出的时候,不用等待那些子线程完成,那就设定这些线程的daemon属性。即,线程开始(调用thread.start())之前,调用setDaemon()函数设定线程的daemon标准(thread.setDaemon(True))就表示这个线程“不重要”。
        如果你想要等待子线程完成再退出,那就什么都不用做,或者显示地调用thread.setDaemon(False)以保证其daemon标志位False。你可以调用thread.isDaemon()函数来判断其daemon标志的值。
       
新的子线程会继承其父线程的daemon标志,整个Python会在所有的非守护线程退出后才会结束,即进程中没有非守护线程存在的时候才结束。

        2.Thread类
        threading的Thread类是你主要的运行对象。它有很多thread模块里没有的函数。

函数

描述

start()

开始线程的执行

run()

定义线程的功能的函数(一般会被子类重写)

join(timeout=None)

程序挂起,直到线程结束;如果给了timeout,则最多阻塞timeout秒

getName()

返回线程的名字

setName(name)

设置线程的名字

isAlive()

布尔标志,表示这个线程是否还在运行中

isDaemon()

返回线程的daemon标志

setDaemon(daemonic)

把线程的daemon标志设为daemonic(一定要在调用start()函数前调用)

        用Thread类,可以用多种方法来创建线程。现在介绍三种方法,你可以选择自己喜欢或社和自己程序的方法(通常选择最后一个):
        (1) 创建一个Thread的实例,传给它一个函数;
        (2) 创建一个Thread的实例,传给它一个可调用的类对象;
        (3) 从Thread派生出一个子类,创建一个这个子类的实例。


        3.创建Thread实例,传给它一个函数
        这第一个例子使用方法一,把函数及其参数如上面Thread模块的例子一样传进去。主要变化包括:添加了一些Thread对象;在实例化每个Thread对象时,把函数(target)和参数(args)都传进去,得到返回的Thread实例。
        实例化一个Thread调用Thread()方法与调用thread.start_new_thread()之间的最大区别是:新的线程不会立即开始。在你创建线程对象,但不想马上开始运行线程的时候,这是一个很有用的同步特性。
        threading模块的Thread类有一个join()函数,允许主线程等待线程的结束。

#coding=utf-8
import threading 
from time import sleep, ctime 
 
loops = [4,2]                      #睡眠时间
 
def loop(nloop, nsec):
    print 'Start loop', nloop, 'at:', ctime() 
    sleep(nsec) 
    print 'Loop', nloop, 'done at:', ctime()
    
 
def main():
    print 'Starting at:', ctime()
    threads = []
    nloops = range(len(loops))     #列表[0,1]
        
    #创建线程
    for i in nloops:
        t = threading.Thread(target=loop,args=(i,loops[i]))
        threads.append(t)

    #开始线程
    for i in nloops:
        threads[i].start()

    #等待所有结束线程
    for i in nloops:
        threads[i].join()

    print 'All end:', ctime() 

if __name__ == '__main__': 
    main()

        运行结果如下图所示:其中loop0和loop1并行执行,loop1先结束共执行2秒,loop0后结束执行4秒,总共运行时间4秒。注意:此时Start是分行显示了。

        所有的线程都创建之后,再一起调用start()函数启动线程,而不是创建一个启动一个。而且,不用再管理一堆锁(分配锁、获得锁、释放锁、检查锁的状态等),只要简单地对每个线程调用join()函数就可以了。
        join()会等到线程结束,或者在给了timeout参数的时候,等到超时为止。使用join()比使用一个等待锁释放的无限循环清楚一些(也称“自旋锁”)。
        join()的另一个比较重要的方法是它可以完全不用调用。一旦线程启动后,就会一直运行,直到线程的函数结束,退出为止。
         如果你的主线程除了等线程结束外,还有其他的事情要做(如处理或等待其他的客户请求),那就不用调用join(),只有在你要等待线程结束的时候才要调用join()。

        4.创建一个Thread实例,传给它一个可调用的类对象
        这是第二个方法,与传一个函数很相似,但它是传一个可调用的类的实例供线程启动的时候执行,这是多线程编程的一个更为面向对象的方法。相对于一个或几个函数来说,由于类对象里可以使用类请打的功能,可以保存更多的信息,这种方法更为灵活。

#coding=utf-8
import threading 
from time import sleep, ctime 
 
loops = [4,2]                   #睡眠时间

class ThreadFunc(object):

    def __init__(self, func, args, name=''):
        self.name=name
        self.func=func
        self.args=args

    def __call__(self):
        apply(self.func, self.args)

def loop(nloop, nsec):
    print "Start loop", nloop, 'at:', ctime()
    sleep(nsec)
    print 'Loop', nloop, 'done at:', ctime()

def main():
    print 'Starting at:', ctime()
    threads=[]
    nloops = range(len(loops))   #列表[0,1]

    for i in nloops:
        #调用ThreadFunc类实例化的对象,创建所有线程
        t = threading.Thread(
                target=ThreadFunc(loop, (i,loops[i]), loop.__name__)
            ) 
        threads.append(t)
        
    #开始线程
    for i in nloops:
        threads[i].start()

    #等待所有结束线程
    for i in nloops:
        threads[i].join()

    print 'All end:', ctime() 

if __name__ == '__main__': 
    main()

        运行结果如下图所示,传递的是一个可调用的类,而不是一个函数。

        创建Thread对象时会实例化一个可调用类ThreadFunc的类对象。这个类保存了函数的参数,函数本身以及函数的名字字符串。
        构造器__init__()函数:初始化赋值工作;
        特殊函数__call__():由于我们已经有要用的参数,所以就不用再传到Thread()构造器中;由于我们有一个参数的元组,这时要在代码中使用apply()函数。
        apply(func [, args [, kwargs ]]) 函数:用于当函数参数已经存在于一个元组或字典中时,间接地调用函数。args是一个包含将要提供给函数的按位置传递的参数的元组。如果省略了args,任何参数都不会被传递,kwargs是一个包含关键字参数的字典。

def say(a, b):
    print a, b
apply(say,("Eastmount", "Python线程"))

# 输出
# Eastmount Python线程 

        5.Thread派生一个子类,创建这个子类的实例
        这是第三个方法,主要是如何子类化Thread类,该方法与第二个方法类似。其中创建子类方法和调用类对象方法的最重要改变是:
        (1) MyThread子类的构造器一定要先调用基类的构造器;
        (2) 之前特殊函数__call__()在子类中,名字要改为run()。

#coding=utf-8
import threading 
from time import sleep, ctime 
 
loops = [4,2]                   #睡眠时间

class MyThread(threading.Thread):

    def __init__(self, func, args, name=''):
        threading.Thread.__init__(self)
        self.name=name
        self.func=func
        self.args=args

    def run(self):              #run()函数
        apply(self.func, self.args)

def loop(nloop, nsec):
    print "Start loop", nloop, 'at:', ctime()
    sleep(nsec)
    print 'Loop', nloop, 'done at:', ctime()

def main():
    print 'Starting at:', ctime()
    threads=[]
    nloops = range(len(loops))   #列表[0,1]

    for i in nloops:
        #子类MyThread实例化,创建所有线程
        t = MyThread(loop, (i,loops[i]), loop.__name__)
        threads.append(t)
        
    #开始线程
    for i in nloops:
        threads[i].start()

    #等待所有结束线程
    for i in nloops:
        threads[i].join()

    print 'All end:', ctime() 

if __name__ == '__main__': 
    main()

运行结果如下图所示:


        6.线程运行斐波那契、阶乘和加和
        需要在MyThread类中加入输出信息,除了使用apply()函数运行斐波那契、接触和加和函数外,还把结果保存到实现的self.res属性中,并创建一个函数getResult()得到结果。换句话说,子类方法更加灵活。

#coding=utf-8
import threading 
from time import sleep, ctime 

class MyThread(threading.Thread):

    def __init__(self, func, args, name=''):
        threading.Thread.__init__(self)
        self.name=name
        self.func=func
        self.args=args

    def getResult(self):
        return self.res
    
    def run(self):              #run()函数
        print "Starting", self.name, 'at:', ctime()
        self.res = apply(self.func, self.args)
        print self.name, 'finished at:', ctime()

        在threadfunc.py文件中调用前面定义的Thread子类,myThread.py中的MyThread类。由于这些函数运行得很快(斐波那契函数运行慢些),使用sleep()函数比较它们的时间。实际工作中不需要添加sleep()函数。

#coding=utf-8
from myThread import MyThread   #myThread.py文件中MyThread类
from time import sleep, ctime 

#斐波那契函数
def fib(x):
    sleep(0.005)
    if x < 2:
        return 1
    return (fib(x-2) + fib(x-1))

#阶乘函数 factorial calculation 
def fac(x):
    sleep(0.1)
    if x < 2:
        return 1
    return (x * fac(x-1))

#求和函数
def sum(x):
    sleep(0.1)
    if x < 2:
        return 1
    return (x + sum(x-1))

funcs = [fib, fac, sum]
n = 14

def main():
    nfuncs = range(len(funcs))

    print '*****单线程方法*****'
    for i in nfuncs:
        print 'Starting', funcs[i].__name__, 'at:', ctime()
        print funcs[i](n)
        print 'Finished', funcs[i].__name__, 'at:', ctime()
    print '*****结束单线程*****'

    print ' '
    print '*****多线程方法*****'
    threads = []
    for i in nfuncs:
        #调用MyThread类实例化的对象,创建所有线程
        t = MyThread(funcs[i], (n,), funcs[i].__name__)
        threads.append(t)
        
    #开始线程
    for i in nfuncs:
        threads[i].start()

    #等待所有结束线程
    for i in nfuncs:
        threads[i].join()
        print threads[i].getResult()

    print '*****结束多线程*****'

if __name__ == '__main__': 
    main()

        运行结果如下图所示,单线程运行10s,多线程运行6s。

        至于Queue模块这里就不再叙述了。
        下面介绍除了各种同步对象和线程对象外,threading模块还提供了一些函数。

函数

描述

activeCount()

当前活动的线程对象的数量

currentThread()

返回当前线程对象

enumerate()

返回当前活动线程的列表

settrace(func)

为所有线程设置一个跟踪函数

setprofile(func)

为所有线程设置一个profile函数

        最后给出一些多线程编程中可能用得到的模块。

模块

描述

thread

基本的、低级别的线程模块

threading

高级别的线程和同步对象

Queue

供多线程使用的同步先进先出(FIFO)队列

mutex

互斥对象

SocketServer

具有线程控制的TCP和UDP管理器

        总之,这篇文章主要是参考《Python核心编程》的,希望文章对你有所帮助~尤其是初学Python编程的,同时为后面我学习多线程的爬虫或分布式爬虫做铺垫。这篇文章花了自己一些时间,写到半夜;写文不易,且看且珍惜吧!勿喷~
       (By:Eastmount 2015-12-09 半夜5点  http://blog.csdn.net/eastmount/  

Python中,可以使用多线程来实现并发执行任务。然而,由于全局解释器锁(GIL)的存在,Python多线程并不能真正实现多核并行处理,但可以在IO密集型任务中提高效率。 要获取函数的返回值,可以使用以下几种方法: 1. 使用`threading.Thread`类创建线程,并通过`join()`方法等待线程执行完毕,然后通过线程对象的属性获取返回值。 ```python import threading def my_function(): # 执行一些任务 return result # 创建线程 my_thread = threading.Thread(target=my_function) # 启动线程 my_thread.start() # 等待线程执行完毕 my_thread.join() # 获取返回值 result = my_thread.result ``` 2. 使用`concurrent.futures`模块中的`ThreadPoolExecutor`类来管理线程池,并通过`submit()`方法提交任务,然后使用`result()`方法获取返回值。 ```python from concurrent.futures import ThreadPoolExecutor def my_function(): # 执行一些任务 return result # 创建线程池 executor = ThreadPoolExecutor() # 提交任务并获取Future对象 future = executor.submit(my_function) # 获取返回值 result = future.result() ``` 3. 使用`queue.Queue`类来在主线程和子线程之间传递数据,将函数的返回值放入队列中,在主线程中获取返回值。 ```python import threading import queue def my_function(queue): # 执行一些任务 result = ... # 将结果放入队列 queue.put(result) # 创建队列 result_queue = queue.Queue() # 创建线程 my_thread = threading.Thread(target=my_function, args=(result_queue,)) # 启动线程 my_thread.start() # 获取返回值 result = result_queue.get() ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值