【精选】数据治理项目实施(合集)07——数据治理指标体系如何建立

        先说说为什么需要指标体系,存在的意义是什么。我们通常在面对业务场景下,客户或者管理者都需要各种各样的统计结果,但普遍存在的一个现象就是A管理者认为应该从A角度统计的指标才符合标准,B管理者认为应该从B角度统计的指标才有效,那么场景越复杂,面临的指标需求就越沉重或者冗余,因为一个问题往往需要从多个角度去进行分析,而面对复杂的多重指标、关联指标我们如何去做管理,如何能够结合问题背景做出更加灵活的应对,防止指标的单一性出现的信息误差?那么这种背景下,指标体系的建立可以帮助我们构建体系化的指标框架,能够通过各种维度的场景提供解决方案,发挥数据资产的最大化效益。本篇将结合行业实践介绍指标体系的建立步骤和方式。

01 指标体系的基本含义

        指标体系分为两个部分,一个是指标,一个是指标和指标间的关联关系,称之为体系。

        在讨论指标体系之前,我们需要了解什么是指标,业务发展过程中,企业内外部都会产生很多的业务数据,对这些数据进行采集、计算、落库、分析后,形成的统计结果称为指标。指标是业务被拆解、量化后形成的数量特征,包括定性和定量两部分内容,定性部分通常在指标中指维度,用来描述指标的观察视角定量部分指度量,用来描述指标的数值结果,基于指标结果,企业可以衡量和监控自身运行状态、业务成果、战略实施效果等。

        指标体系则是围绕某一业务主题,基于一定的逻辑关系和层次结构,将相互独立又彼此关联的指标连接起来组成的有机整体,指标体系是对业务过程的全面完整的刻画,同时也涉及对指标的分类分级和标准化管理,以此来综合判断影响业务发展的市场、企业管理等因素的具体情况,基于数据的变化做决策优化、战略迭代等,进而实现业务的稳健增长。

02 指标体系框架

        指标数据主要分为基础指标和派生指标,有的地方也称原子指标、衍生指标等概念。基础指标是表达业务实体原子量化属性的且不可再分的概念集合。它们是最基本的、不可拆解的数据单元,通常直接从原始数据中获取,如交易笔数、交易金额、交易用户数等。派生指标是指基础指标结合维度产生的指标。它们通过添加时间周期、修饰词等要素,对基础指标进行进一步的描述和限定,以反映更具体的业务状况。如交易金额的完成值、计划值、累计值、同比、环比、占比等。基础指标是数据分析的基石,提供了最原始、最直接的业务度量。派生指标通过对基础指标进行时间、范围等维度的限定,反映了更具体、更细分的业务状况。

  为确保指标数据标准定义的完整与严谨,必须构建一整套指标数据标准的信息项属性架构,从业务、技术、管理三个视角来定义:

    业务属性:是核心的指标内容,用于描述基础数据的业务层面信息,需要从业务角度考虑,对业务进行分解,逐级定义指标的内容,使得业务人员能够轻松理解数据的含义。

    技术属性:技术属性关注基础数据的技术细节,确保数据能够在系统中得到正确实现。涉及数据类型、数据格式、长度、编码规则、取值范围等。。

    管理属性:涉及数据的治理和管理层面,包括数据的标准定义者、管理者、使用者,以及数据标准的版本、应用领域、所服务的系统等。

        由于基础数据标准对企业运营的广泛影响,其一旦发布,通常保持高度稳定,不会轻易变更。这些标准成为企业内各系统间共享的公共代码,是确保数据一致性和减少歧义的关键。这也应对了上一篇提到的数据标准的内容,标准一旦定义便不得随意修改。

03 指标体系建设步骤

        指标体系的建设,一般分为六个阶段,即指标现状调研、指标体系设计、指标开发、指标应用、指标质量管理和指标维护。

(一)、指标现状调研

        在建立指标体系之前,我们先需要对业务进行全面的梳理,找到目前企业分散在各个应用系统当中的指标,同时调研的时候既要能了解企业的战略目标,又要深入剖析核心业务场景,确定当前企业或管理者关注的问题核心,再基于核心业务场景从不同维度进行分裂,因为很多业务场景都是有多个细分场景。

(二)、指标体系设计

指标体系设计分三个内容,一是形成指标清单,即上一步的梳理结果的基础上进行规范补充。二是分析指标数据所需要统计的维度,三是建立指标与维度之间的映射关系。

指标清单可以按照如下表格进行分类规划,明确不同业务场景的分类和定义内容,分业务、技术、管理三个维度进行规范定义。

指标的统计维度,按照时间、计算规则、组织、业务对象等维度进行分类。

    可以借用脑图的方式,梳理指标内容。

指标内容梳理完之后,需要对指标进行规范化定义,

指标命名公式 = 限定词+ 业务主题+ 指标名称+ 量化词

- 限定词:用来对指标进行限定约束。比如:当天、本周、当月、平均、累计。

- 业务主题:用来描述业务在哪个过程阶段。比如:打开页面、下单、点击支付、支付成功、支付失败。

- 指标名称:是指标要统计的对象实体名称。比如:统计订单还是用户。

- 量化词:是对一物理量的测定,通常以数字单位来表示。比如:金额、份额、次数、率。

    通过指标体系的设计,形成指标字典,指标字典,简单地说,其实就是把指标通过有组织、有秩序的进行整理,明确指标的口径、维度、指标取数逻辑等信息,形成公司内各个业务部门均统一认同的标准化数据体系。好的指标字典可以降低沟通成本,提升沟通效率;打破信息隔阂,减少公司重复性建设;是公司数据化建设的基础、数据平台搭建的基础。

(三)、指标任务开发

    指标任务开发和常规开发步骤相似,先进行指标建模,建模流程主要是从业务视角指导工程师对需求场景涉及的指标进行主题抽象,归类,统一业务术语,减少沟通成本,定义好模型编码和规范,同时避免后续的指标重复建设。

        指标模型定义好之后,便进入指标的开发阶段,结合上面定义的指标字典,进行代码开发和测试。  

    (四)、数据指标应用

    指标体系的应用一般有以下几个场景:

  • 数据分析(商务智能/数据仓库/决策分析/大数据分析/移动分析/领导驾驶舱);

  • 报表或人工填报(统一集团和子分公司的统计格式);

  • 战略和绩效管理(计划/预算/绩效系统等);

  • 数据管理(主数据管理、元数据管理、数据质量管理);

  • 数据服务(通过统一接口定义,在不同系统中共享指标)。

        同时,数据指标也是数据资产价值的一种体现,可以将指标规划为能力中心,以服务的方式提供给外部使用,形成数据指标服务列表。

  (五)、指标质量管理

    数据指标的质量管理也应遵循PDCA的定律进行,指标数据的来源严格按照中台治理后的标准进行深加工,在数据中台融合的数据得到质量保障的基础上才能确定指标的有效性。

(六)、数据指标维护

     指标的维护需要建立完善的指标管理规范,从需求管理、加工过程规范、指标定义规范层面定义好指标体系的维护。对指标进行版本化管理,做到指标变化有追溯,并维护好指标字典,便于开发人员识别指标的变化内容。

(完结)


 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

———— 数据治理行业资料及实施模板获取请加入获取————

———— 星球资料部分内容————

           ———— 更多资讯请添加公众号————

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

elevenli9216

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值