回复审稿意见应注意的细节—中西文化差异

本文探讨了在学术交流中,特别是与西方学者沟通时应注意的文化差异,包括如何正确使用称谓、如何恰当地表达谦虚以及如何直接面对学术批评。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
回复审稿意见需要附上一个给编辑的CoverLetter,以及一个给审稿人的ResponseLetter。这两个文件主要都是用以交流,会更加口语化,形式上也更加自由。在撰写时,应注意一下中西文化上的差异。
在cover letter里面,要注意称谓的问题。称谓的问题是比较普遍的,给老外发邮件的时候常常出现。国内教授很多,而且经常称呼人的时候长一级,称人家为“教授”是比较正常的。但国外的情况不太一样。以前申请博士课程的时候,跟导师发了几个月的邮件,title都用professor。等去了之后才知道,原来一个组就一个教授(professor),虽然也有讲师(lecturer)跟reader,但是没有人把这些当做头衔。所以除了professor,其他的都用Dr,当然对于没有拿到PhD学位的只能用Mr了。虽然一般人在邮件里被称为prof.也不会主动去矫正。但是一不小心碰到个千年reader,人家那是会多尴尬啊。

再回到对编辑的称谓上,在回复审稿人意见的时候,都会知道责任编辑(associate editor)或者主编(editor in chief)的名字,就是发审稿意见的那个人。所以cover letter的title,就可以直接用头衔+姓来称呼。搞不清楚是Dr还是Prof.的话,google一下比较妥当,如果找不到相关的信息,那就用Dr吧。也可以直接用Dear +名字,因为都已经是修改稿了,双方算是已经打过招呼了,第二回就不用那么官方了,看着也亲切一些。在国内不能这样,会给说成是不懂礼貌的。中国人也习惯以行政职务来称呼人,所以用dear editor也很自然,但在老外看来,还不如直接称呼他的名字呢。
谦让是中华民族的美德,对待老外,正常谦虚就可以了,过分了反而不好。比如一篇文章确实写得不错,连审稿人都由衷地称赞是个excellent work。回答的时候thank you一下就过去了,但是要是在后头加上一句 we have a lot to improve.就有点谦虚过头了。这反过来是说审稿人境界太低了,看不到后面还有很多可以改进的地方,就给作者忽悠过去了。实际上,作者可能只是下意识地谦虚一下,文章本身也没啥可以further improved的。同时,别人如果一连问了十几二十个问题,在问答的时候是不需要每个问题都thank you一遍的。在开头或者结尾一块感谢一下就可以了。
相对而言,老外对于学术的态度要更加直白一些,没有那么多弯弯,比如他们会直接说文章nonsense,waste of time。或者见过在国际会议上,两个大boss直接无视其他人的存在,直接开吵的情况吧?中国式的谦虚遇到这种情况该怎么办呢?肯定不能再谦虚了,再谦虚就被拒稿了。弯弯可以绕,比如含蓄地指出审稿人的错误,但是最终还是要正面地、不亢不卑地指出他的错误,或者列出不同意他的观点的几个原因。
很多老外都信教,但他们大部分对科学的态度又是无神论的。按周总理的说法,这叫做求同存异。不要觉得他们都信教就能用“God”,“Creator”来拉近距离。最近出了个事情,华科的熊教授因为在文章中出现design by the Creator,而给PLOS one撤稿了。这事的起因是曼彻斯特大学的James McInerney在twitter上发文说,把神创论搬上正式的期刊,简直就是个笑话。相信熊教授是无心的,但是要记得,科学是科学,宗教是宗教,尤其对科学文章而言。

### 使用ChatGPT有效回复学术论文或文章的审稿意见 #### ChatGPT的用优势 对于研究者而言,利用ChatGPT来准备针对审稿人评论的有效回是一种高效的方法。由于ChatGPT具备强大的文本生成能力,能够生成高质量、具有指导性的审稿意见答复[^1]。这不仅有助于提高沟通效率,还能确保回复内容的专业性和逻辑性。 #### 多语言支持特性 考虑到国际化的交流环境,ChatGPT还提供了多语言的支持服务,这对于涉及跨国合作项目的作者来说尤为重要。无论目标期刊采用何种官方语言,ChatGPT都能帮助撰写符合要求的文字材料,从而扩大了其适用范围并增强了实用性。 #### 构建有效的回复策略 当面对具体的审稿建议时,当先仔细阅读每一条意见,并确认理解无误后再着手编写回复文档。在此过程中,可以借助于ChatGPT所提供的模板化结构作为参考框架,比如按照“感谢-澄清-改进措施”的模式组织段落;同时也要注意保持语气礼貌诚恳,体现出对同行评议工作的尊重态度。 为了进一步优化最终版本,在完成初稿之后还可以运用ChatGPT自带的润色工具对其进行修饰调整,使得整体表述更加通顺连贯且易于理解[^2]。 ```python def generate_review_response(review_comments): """ Generates a structured response to reviewer comments using the "thank-explain-improve" pattern. Args: review_comments (list): A list of strings, each representing one comment from reviewers. Returns: str: Formatted and polished response text ready for submission. """ responses = [] for comment in review_comments: thanks_section = f"We appreciate your valuable feedback regarding {comment}." explanation_section = "To clarify..." improvement_plan = "In light of this suggestion, we have made adjustments by..." combined_text = "\n".join([thanks_section, explanation_section, improvement_plan]) # Use ChatGPT's polishing feature here polished_text = polish_text(combined_text) responses.append(polished_text) return "\n\n".join(responses) def polish_text(text_to_polish): """Simulates applying ChatGPT’s language refinement capabilities.""" pass # Placeholder function; actual implementation would involve API calls or similar logic ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值