Coordinate Rotation,the DCM(坐标旋转,方向余弦矩阵)

一个非常重要的概念:向量是独立于坐标系的存在。

位置、速度、力矩等都可以以向量的形式表示。

但是位置是一个和原点有关的向量,其实位置是一个点,把它和原点连起来,指向位置的向量就是位置向量。这种向量称之为有限向量。(Bound Vector)

而速度和力矩都和坐标系没有关系,他们自由存在于空间中,称之为自由向量。(Free Vector)

如图1.2-1所示,当一个向量\boldsymbol{u}沿着单位向量\boldsymbol{n}按左手定则转动了\mu角度,形成了新的向量\boldsymbol{v},则新的向量可以由下式求得:

\mathbf{v}=\mathbf{u}+(1-cos\mu)(\mathbf{n}\times (\mathbf{n}\times\mathbf{u}))-(\mathbf{n}\times\mathbf{u})sin\mu

或者

\mathbf{v}=(1-cos\mu)\mathbf{n}(\mathbf{n}\cdot \mathbf{u})+ \mathbf{u}cos\mu - ( \mathbf{n} \times \mathbf{u}) sin\mu


当把上述旋转公式放到一个坐标系a中时,其转换为下式:

\mathbf{v}^a=[(1-cos\mu)\mathbf{n}^a(\mathbf{n}^a)^T+ (cos\mu)\boldsymbol{I} - sin\mu \mathbf{\tilde{n} }^a]\mathbf{u}^a,

其中

\mathbf{\tilde{n}}^a\mathbf{u}^a=\begin{bmatrix} 0 & -n_z & n_y\\ n_z & 0 & -n_x \\ -n_y & n_x & 0 \end{bmatrix}\begin{bmatrix} u_x\\u_y \\ u_z \end{bmatrix}\equiv (\mathbf{n}\times\mathbf{u})^a

记住:这个公式是把向量\boldsymbol{u}沿着单位向量\boldsymbol{n}左手定则转动了\mu角度形成了新的向量\boldsymbol{v}

在这儿,为了便于理解,我们定义上述向量都是在二维平面坐标系中,\mathbf{v}^a=[v_x,v_y]^T,\mathbf{u}^a=[u_x,u_y]^T.


下面我们来解释这段话:In component form, the new array can be interpreted as the components of a new vector in the same coordinate system, or as the components of the original vector in a new coordinate system, obtained by a right-handed coordinate rotation around the specified axis. 即:在坐标形式下,新的数组[v_x,v_y]^T可以代表一个新向量\mathbf{v}在同一坐标系下的坐标值;也可以表示初始向量\mathbf{u}在一个新坐标系下的坐标值,这个新坐标系是沿着特定轴按右手定则旋转而成。

 

前半句很好理解,直接按定义就可以得出,后半句呢?

从上面这个图我们可以理解:在坐标形式下,新的数组[v_x,v_y]^T可以代表一个新向量\mathbf{v}在同一坐标系下的坐标值;

下面这个图的右图,我们发现,将原坐标系a和向量\mathbf{v}按右手定则旋转和之前相同的角度后,向量\mathbf{v}就和向量\mathbf{u}重合了(抛开坐标系不看,\mathbf{u}按左手定则转动一个角度,再按右手定则转动相同的角度,必然还是回到原始的位置),也就是可以认为是同一个向量,由于向量\mathbf{v}和坐标系a同时转动得到坐标系b和现在新的向量\mathbf{u},那么\mathbf{u}在坐标系b中的坐标就是[v_x,v_y]^T


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值