考虑二维装箱的车辆路径问题2L-VRP

作者简介:本人擅长运筹优化建模及算法设计,包括各类车辆路径问题、生产车间调度、二三维装箱问题,熟悉CPLEX和gurobi求解器

微信公众号:运筹优化与学习

如有运筹优化相关建模或代码定制需求,可通过微信公众号联系我们

前言

之前和大家介绍了二维装箱问题、三维装箱问题,如果大家感兴趣可以看之前的几篇推文:

遗传算法求解三维装箱问题(上篇)

遗传算法求解三维装箱问题(下篇)-代码详解

Best-Fit算法求解二维装箱问题

今天这篇推文将介绍考虑二维装箱的车辆路径问题(Two-dimensional loading constrained vehicle routing problem, 2L-VRP)

问题简介

在传统的车辆路径问题的基础上,Iori等率先考虑运输货物的二维尺寸,首次将二维装箱问题与VRP问题相结合提出了2L-VRP。区别于传统车辆路径问题,2L-VRP将客户需求的货物明确为已知长度、宽度和数量的物料箱,故不仅需要考虑车辆的最大载重,还需要考虑货物的合理摆放。

根据是否考虑物料箱装载顺序(即先进后出约束)以及是否允许二维平面上旋转,将2L-VRP分为四类:

(1) 2|UO|L:不考虑先进后出约束且货物不可旋转;

(2) 2|UR|L:不考虑先进后出约束,货物允许二维平面上的旋转;

(3) 2|SO|L:考虑先进后出约束,货物不可旋转;

(4) 2|SR|L:考虑先进后出约束且货物允许二维平面上的旋转。

模型构建

将2L-VRP定义为完备的有向图 G = ( V , E ) G=(V,E) G=(V,E),其中所有节点集合 V = 0 ∪ V 0 V={0}∪V_0 V=0V0,0表示配送中心,客户点集合 V 0 = { 1 , 2 , ⋯ , v } V_0=\left\{1,2,⋯,v\right\} V0={1,2,,v};弧集合 E = { ( i , j ) ∣ i , j ∈ V } E=\left\{(i,j)|i,j∈V\right\} E={(i,j)i,jV} c i j c_{ij} cij为节点 i i i j j j之间的运输成本。每个客户 i i i的货物需求量为 q i q_i qi,矩形物料箱个数为 m i m_i mi。客户 i i i的第 h h h个物料箱表示为 I i h ( h ∈ Φ i ) I_{ih} (h∈Φ_i) Iih(hΦi),其长、宽分别为 l i h l_{ih} lih w i h w_{ih} wih a i ( = ∑ h ∈ Φ i ( l i h × w i h ) ) a_i (=∑_{h∈Φ_i}(l_{ih}×w_{ih})) ai(=hΦi(lih×wih))表示客户i所有物料箱的总面积。配送中心可用于运输的车辆集合为 K K K,车辆的最大载重量为 Q Q Q,车辆长、宽分别为 L L L, W W W



目标函数(1)表示最小化总运输成本

约束(2)确保每辆车装载的货物总重量不超过车辆最大载重

约束(3)表示每个客户仅被服务一次

约束(4)为流量守恒约束

约束(5)明确每个客户点的货物由哪辆车进行服务

约束(6)和(7)确保货物摆放位置不超出车厢范围

约束(8)-(10)表示任意两货物之间不能重叠摆放

约束(11)–(15)描述货物旋转约束以及先进后出约束

参考文献

IORI M, SALAZAR-GONZáLEZ J-J, VIGO D. An exact approach for the vehicle routing problem with two-dimensional loading constraints[J]. Transportation Science, 2007, 41(2): 253-64.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

eternal1995

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值