1 卷积的数学定义
- 实分析下的一维卷积
设f(t)和g(t)是R(实数域)上的可积函数,做积分:
该积分定义了一个新函数,记为h(t),称h(t)为f(t)和g(t)的卷积,记作h(t)=fg。容易fg=g*f。 - 离散序列的一维卷积
2 卷积的物理解释
作为一名电类的学生,信号与系统、电路是我们的必修课程,下面介绍如何从信号与系统和电路的角度去理解卷积的物理意义。
- 什么是单位冲激信号
- 冲激信号用可以用来干嘛:任何一个连续时间信号都可以表示为冲激信号的和。
- 如何求一个系统的响应:那么有了上述基础后,如何求一个系统或者说一个电路的对任一信号的响应呢?为了利用上述冲激信号的性质,我们必须假设该系统为LTI系统。对于LTI系统,由叠加和线性,我们可以将输入信号分解为一系列延迟的冲激信号的和。由于时不变,输入延时多少,输入也就延时多少。说白了冲激函数相当于一个采样,可以筛选出某时刻的信号。
- 利用冲激响应求解过程:将输入信号分解为一系列冲激信号,将每个冲激信号分别作用于系统,然后将输出求和即可得到系统零状态输出。对于 σ ( t ) \sigma(t) σ(t),系统有冲激响应 h ( t ) h(t) h(t)。由时不变性,对于 σ ( t − τ ) \sigma(t-\tau) σ(t−τ),系统输出 h ( t − τ ) h(t-\tau) h(t−τ)。由线性关系,对于幅值为 f ( τ ) f(\tau) f(τ)的冲激信号 f ( τ ) σ ( t − τ ) f(\tau)\sigma(t-\tau) f(τ)σ(t−τ),系统输出为 f ( τ ) h ( t − τ ) f(\tau)h(t-\tau) f(τ)h(t−τ)。对于连续系统求和化为积分,所以系统对输入信号 f ( t ) f(t) f(t)的零状态输出为遍历所有输入时刻再求和即 ∫ − ∞ + ∞ f ( τ ) h ( t − τ ) d τ \int_{-\infty}^{+\infty}f(\tau)h(t-\tau)\,d\tau ∫−∞+∞f(τ)h(t−τ)dτ。
- 抽象上述过程:上述过程可抽象为对系统冲激响应移位,然后加权,然后求和。