RAG 与 HyDE

传统 RAG 与 HyDE,直观解释!

传统 RAG 系统的一个关键问题是问题在语义上与答案不相似。

考虑以下示例,您想要找到类似于“什么是 ML?”的句子。 “什么是 AI?” 可能看起来比“机器学习很有趣”更相似。

这种语义差异导致在检索步骤中检索到几个不相关的上下文。

HyDE 解决了这个问题。

下面的视觉效果说明了这种方法与传统 RAG 的不同之处。

它的工作原理如下:

- 使用 LLM 为查询 (Q) 生成假设答案 (H)。 这个答案不必完全正确。

- 使用检索器模型嵌入答案以获得 E。 经过对比学习训练的双编码器通常用于此目的。

- 使用嵌入 E 查询向量数据库并检索相关上下文 (C)。

- 将假设答案 H、检索到的上下文 C 和查询 Q 传递给 LLM 以生成最终答案。

完成!

现在,当然,生成的假设可能会包含幻觉细节。

但这不会严重影响性能,因为检索器模型是嵌入的。

更具体地说,该模型使用对比学习进行训练,它还可以用作近无损压缩器,其任务是过滤掉虚假文档的幻觉细节。

这会产生一个向量嵌入,预计它与实际文档的嵌入的相似度要高于问题与真实文档的相似度。

多项研究表明,与传统嵌入模型相比,HyDE 提高了检索性能。

但这是以增加延迟和更多 LLM 使用为代价的。

喜欢这个吗?你也应该看看我的 RAG 系列!从构建和优化 RAG 应用程序到评估性能和制作代理和多模式系统——一切都在这里。


@akshay_pachaar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FeelTouch Labs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值