迭代法求模型的参数

迭代优化:

牛顿-- 拉夫逊方法 (Newton-Raphson method)解非线性方程:

在这里插入图片描述

问题描述:

为了简单起见使用一个自变量的模型来说明,
假设我们有一个函数模型 y = f ( x ) = k 2 ∗ x 3 y=f(x)=k^2*x^3 y=f(x)=k2x3,其中 f ( x ) f(x) f(x)中有一些未知的参数 k k k未知。而我们已知对应的 x 0 , y 0 x_0,y_0 x0,y0, 怎么计算出未知的 k k k呢?不准用解析法。

问题转化:因为这里的 x x x 是已知的 x 0 x_0 x0, k k k才是未知的。所以令 g ( k ) = x 0 3 k 2 − y 0 g(k)=x_0^3k^2 -y_0 g(k)=x03k2y0, 那么 k = ? k=? k=? 能使得 g ( k ) = x 0 3 ∗ k 2 − y 0 = 0 g(k)=x_0^3*k^2 -y_0=0 g(k)=x03k2y0=0呢?==>到此可以看出问题已经转化为 g ( k ) = 0 g(k)=0 g(k)=0, 方程求解问题了。因此可以利用牛顿法解非线性方程。步骤如下:

  • S1:先给 k k k一个任意的初始值 k 0 k_0 k0,正向计算 g ( k 0 ) = x 0 3 k 0 2 − y 0 g(k_0)=x_0^3k_0^2-y_0 g(k0)=x03k02y0,注意:这里的 g ( k 0 ) = f ( x 0 ) − y 0 g(k_0)=f(x_0)-y_0 g(k0)=f(x0)y0,就是原函数的 Δ y \Delta y Δy
  • S2:计算 g ′ ( k ) = 2 x 0 3 k 0 g^{'}(k)=2x_0^3k_0 g(k)=2x03k0 k 0 k_0 k0处的导数。
  • S3:计算 Δ k = g ( k 0 ) g ′ ( k 0 ) \Delta k={g(k_0) \over g^{'}(k_0)} Δk=g(k0)g(k0).
  • 更新 k = k 0 − Δ k k=k_0 -\Delta k k=k0Δk
  • 重复S1-S3 直到 Δ k \Delta k Δk 小于一个很小很小的值

python 代码测试:

import os
# support our function is y=k^2*x**3, k=10,we  give a x0 and y0, please according x0,y0, fit our  function.

#k=10
x0=2
y0=800


def func(k,x):
    y=k**2*x**3
    return y

#df =2k*x**3
def derivative(k,x):
    y=2*k*x**3
    return y

#initial 
k=99
# Optimization 
for intr  in range(0,300):
    y = func(k,x0)    
    delta_y = y-y0   #S1
    df = derivative(k,x0) #s2
    
    #print(y,df,delta_y)
    delta_k = delta_y/df  
    print("delta_k",delta_k)
    k = k - delta_k   #S3
    
    print("k=",k,intr)
    if abs(delta_k) < 0.0001:
        break

执行的结果如下:
delta_k 48.994949494949495
k= 50.005050505050505 0
delta_k 24.002626252424253
k= 26.002424252626252 1
delta_k 11.078314495145142
k= 14.92410975748111 2
delta_k 4.1117712898024505
k= 10.81233846767866 3
delta_k 0.7818226922040425
k= 10.030515775474619 4
delta_k 0.030469356498084566
k= 10.000046418976535 5
delta_k 4.6418868798972104e-05
k= 10.000000000107736 6

扩展到多自变量,多因变量,理论分析如下:

牛顿迭代法可以推广到多元非线性方程组 F(x)=0的情况,称为牛顿-- 拉夫逊方法 (Newton-Raphson method). 当 F ( x ) F(x) F(x) 关于 x x x 的 Jacobi 矩阵 J ( x ) = ( ∂ F ∂ x ) \boldsymbol{J}(\boldsymbol{x}) = (\cfrac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}}) J(x)=(xF) 可逆时, 有
x ( k + 1 ) = x ( k ) − J − 1 ( x ( k ) ) F ( x ( k ) ) , \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}- \boldsymbol{J}^{-1}(\boldsymbol{x}^{(k)})\boldsymbol{F}(\boldsymbol{x}^{(k)}), x(k+1)=x(k)J1(x(k))F(x(k)),,

求解步骤:
求解非线性方程组的Newton-Raphson方法:
1、 取初始点 x(0),最大迭代次数 N 和精度要求 ε, 置 k=0;
2、 求解线性方程组 J ( x k ) d = − F ( x k ) J(x^k)d=−F(x^k) J(xk)d=F(xk);
3、 若 |d|<ε, 则停止计算;否则,置 x k + 1 = x k + d k x^{k+1}=x^k+d^k xk+1=xk+dk;
4、 若 k=N, 则停止计算;否则,置 k=k+1, 转(2).

联系到这里Calibration具体问题域分析:

假设有15 个自变量( k 0 , k 1 , ⋯ &ThinSpace; , k 14 k_0,k_1,\cdots,k_{14} k0,k1,,k14),2 个因变量( u , v u,v u,v)
模型是很复杂的非线性模型 f ( X , Y , Z ) = [ u , v ] f(X,Y,Z)=[u,v] f(X,Y,Z)=[u,v], 其中模型里有15 个未知的参数 k 0 , k 1 , ⋯ &ThinSpace; , k 14 k_0,k_1,\cdots,k_{14} k0,k1,,k14
已知: u i , v i ⇐ ⇒ X i , Y i , Z i u_i,v_i \Leftarrow\Rightarrow X_i,Y_i,Z_i ui,viXi,Yi,Zi, i = [ 1 ⋯ N ] i=[1 \cdots N] i=[1N] 共N组数据对.
求:参数 k 0 , k 1 , ⋯ &ThinSpace; , k 14 k_0,k_1,\cdots,k_{14} k0,k1,,k14

结合opencv 源代码,做简单分析,就不对细节展开:

 while (change > 1e-10 && iter < MaxIter)
    {
        std::vector<Point2d> x;
        Mat jacobians;
        projectPoints(objectPoints, x, rvec, tvec, param, jacobians);// 求解处u,v 对15 个参数的偏导,构成一个 雅克比矩阵。

        Mat ex = imagePoints - Mat(x).t();  // 这里计算的是-F(xⁿ),此处n=k,相当于 -Δy
        ex = ex.reshape(1, 2);

        J = jacobians.colRange(8, 14).clone();//只取外参6 个参数组成的jacobian 矩阵。

        SVD svd(J, SVD::NO_UV);
        double condJJ = svd.w.at<double>(0)/svd.w.at<double>(5);

        if (condJJ > thresh_cond)
            change = 0;
        else
        {
            Vec6d param_innov;
            solve(J, ex.reshape(1, (int)ex.total()), param_innov, DECOMP_SVD + DECOMP_NORMAL); // 上面的第2步,解线性方程组

            Vec6d param_up = extrinsics + param_innov;   / 更新参数,第3 步
            change = norm(param_innov)/norm(param_up);
            extrinsics = param_up;
            iter = iter + 1;                  //继续迭代, 第4步。

            rvec = Mat(Vec3d(extrinsics.val));
            tvec = Mat(Vec3d(extrinsics.val+3));
        }
    }

参考

https://baike.baidu.com/item/牛顿法/1384129?fr=aladdin
https://www.cnblogs.com/cidpmath/articles/6032051.html

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值