步骤:
1.初始化:
假设有样本集为S,通过主成分分析,求取第一主成分直线,并窃取质心两边分别长度为3/2方差的长度,并计算每个点到直线的投影,以及距离。初始Voronoi区域也就只有一个,包括了所有点集。
2.插入新线段:
- 首先在点集中寻找离自己主成分线段最远的偏远点vf,同时改点周围还至少有2个点到该点距离小于到它们自己主成分线段的距离即:

其中i,j,k = 1, …,n, dist(vi, li)表示点到自己相应的主成分线段的距离。
假设本步骤开始样本区为S1,S2,… ,Sk,偏远点和他邻近点所形成的新样本区域为Sk+1。 - Voronoi区域调整:
 
- 在S1,S2,… ,Sk,Sk+1找到有调整的样本区域,计算其第一主成分,并同上一步一样,计算得到新的主成分线段;
 - 由于产生了新的主成分线段,对所有样本点调整它们的Voronoi区域。
 
3.构造和优化:
将上一步后得到的l1,l2,…,lk个线段构造Hamilton路径,该过程使用贪心算法:
- 令h=k,开始时有h个哈密顿子图,sub_HP。
 - 当h>1,求每个子图的端点到其他子图端点的代价函数值,其定义:

 

                  
                  
                  
                  
本算法介绍了一种基于主成分分析(PCA)和Voronoi图的构建优化方法。通过PCA确定主成分方向,选取质心两侧的样本点,计算各点到主成分线的投影和距离,初始化Voronoi区域。接着,插入新线段并调整Voronoi区域,构造Hamilton路径并使用2-opt算法优化,直至达到设定的最大线段数或目标函数最小化。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					97
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            