K-Segment 主曲线提取算法

本算法介绍了一种基于主成分分析(PCA)和Voronoi图的构建优化方法。通过PCA确定主成分方向,选取质心两侧的样本点,计算各点到主成分线的投影和距离,初始化Voronoi区域。接着,插入新线段并调整Voronoi区域,构造Hamilton路径并使用2-opt算法优化,直至达到设定的最大线段数或目标函数最小化。

步骤:

1.初始化:

假设有样本集为S,通过主成分分析,求取第一主成分直线,并窃取质心两边分别长度为3/2方差的长度,并计算每个点到直线的投影,以及距离。初始Voronoi区域也就只有一个,包括了所有点集。

2.插入新线段:

  1. 首先在点集中寻找离自己主成分线段最远的偏远点vf,同时改点周围还至少有2个点到该点距离小于到它们自己主成分线段的距离即:
    在这里插入图片描述
    其中i,j,k = 1, …,n, dist(vi, li)表示点到自己相应的主成分线段的距离。
    假设本步骤开始样本区为S1,S2,… ,Sk,偏远点和他邻近点所形成的新样本区域为Sk+1。
  2. Voronoi区域调整:
  • 在S1,S2,… ,Sk,Sk+1找到有调整的样本区域,计算其第一主成分,并同上一步一样,计算得到新的主成分线段;
  • 由于产生了新的主成分线段,对所有样本点调整它们的Voronoi区域。

3.构造和优化:

将上一步后得到的l1,l2,…,lk个线段构造Hamilton路径,该过程使用贪心算法:

  • 令h=k,开始时有h个哈密顿子图,sub_HP。
  • 当h>1,求每个子图的端点到其他子图端点的代价函数值,其定义:
    在这里插入图片描述
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值