背景
transformers提供了非常便捷的api来进行大模型的微调,下面就讲一讲利用Trainer来微调大模型的步骤
第一步:加载预训练的大模型
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
第二步:设置训练超参
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="path/to/save/folder/",
learning_rate=2e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=2,
)
比如这个里面设置了epoch等于2
第三步:获取分词器tokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
第四步:加载数据集
from datasets import load_dataset
dataset = load_dataset("rotten_tomatoes") # doctest: +IGNORE_RESULT
<