LSTM又火了!最新52个创新思路+全部开源代码!

今年上半年,LSTM火了!

LSTM原作者分别提出xLSTM和Vision-LSTM,解决了以往的局限性。同时,LSTM+Transformer登上Nature;LSTM+CNN、LSTM+Attention等多种混合模型架构纷纷刷新SOTA。

LSTM绝对是最近非常好出idea水论文的一个方向。我也整理了最近几年52个LSTM创新思路全部有对应代码可以复现。已经按照核心原理整理命名,方便查找。

今天无偿分享给大家学习,欢迎扫码下载。

59e3ca5d5b76fdcda23706494acb8aff.png

扫码下载52个LSTM创新思路

全部论文+代码

5f777200c0948902d864408b917ac0ef.gif

我整理的52个LSTM创新思路都是近几年的论文,最新到2024上半年。已经根据核心思路进行命名分类,方便大家按需求查找学习。

最关键的是,所有思路全部都有下载好的开源代码!小伙伴们不需要再去网上下载论文和代码,直接下载这个合集就可以了。完全无偿分享,扫码就能下载。

dc648e084059a17e38d28c590c15e0be.png

扫码下载52个LSTM创新思路

全部论文+代码

dba367a57f97b35cb76dd98bed3efbb9.gif

这里也简单分析几个近期的热门研究:

- xLSTM通过指数门控和可并行化的矩阵内存结构克服无法修改存储决策、信息必须压缩成标量单元状态、缺乏可并行性等缺陷。Vision-LSTM则是将其拓展到视觉领域。

- LSTM可以与热门的mamba结合。将视觉Mamba块的优势与LSTM集成在一起,构建了一个以VMRNN单元为中心的网络。

- LSTM+Transformer登上nature的研究做到了在多任务实时预测中,即使数据保留率为50%,模型性能依然最优。融合模型同时拥有捕捉长期依赖关系与高效并行计算能力。

等等。。。

想要全部52个LSTM创新思路,可以扫码下载!

988f94eddfec263f1711da2a52560cee.png

扫码下载52个LSTM创新思路

全部论文+代码

27e736b4f30ff1bf290041a2d95b2492.gif

如果大家有进一步学习LSTM的需求,我也分享一个完全免费的LSTM讲座课程。由UK博士、私募量化研究员Felix老师主讲。针对热门的xLSTM、KAN与时间序列

讲座是完全免费的,对时序感兴趣,想结合最新的xLSTM、KAN等技术找idea,发paper的小伙伴们千万不要错过这个讲座!

c9436adc5452933910a4465285a0e8db.png

02e93273969753a4d42e1b6d49f21614.gif

### LSTM创新应用与改进 #### 改进方案 一种针对 LSTM 的改进方法是引入 **Beam Search** 技术,该技术通常与序列到序列(seq2seq)模型结合使用。Beam Search 能够显著提升 LSTM 预测结果的质量,在自然语言处理任务中表现出色[^2]。 #### 应用场景 在实际应用场景中,LSTM 可以与其他神经网络架构相结合形成混合模型。例如,CNN 和 LSTM 的融合是一种高效的创新方式。这种组合利用 CNN 提取局部特征的能力以及 LSTM 对时间序列建模的优势,特别适用于情感分析等领域[^3]。 此外,Gated Recurrent Unit (GRU) 是 LSTM 的简化版本,在许多情况下能够达到类似的性能水平,但其计算复杂度较低,适合大规模时序数据分析任务[^1]。 ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, LSTM, Dense model = Sequential([ Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(None, 50)), LSTM(100, return_sequences=False), Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ``` 上述代码展示了一个简单的 CNN-LSTM 模型结构,用于二分类问题的情感分析任务。 #### 总结 综上所述,LSTM 不仅可以通过算法层面的优化(如 Beam Search),还可以通过与其他深度学习框架(如 GRU 或 CNN)结合来实现更广泛的实际应用和更高的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值