最近,浙大等团队提出了xLSTM-UNet,通过将U-Mamba中的Mamba换成xLSTM,就可以直接提升2D和3D医学图像分割性能,涨点效果显著!
xLSTM-UNet是一种结合了LSTM和UNet的混合网络模型,这类模型保留了UNet出色的空间特征提取能力,增加了对时序信息的捕捉和处理能力,能显著提高分割的精度和准确性。
因此,它被广泛应用于医学图像分割、遥感图像处理、工业检测等领域,同时也为复杂场景下的图像处理任务提供了新的思路和创新方向。
我这次整理了8篇LSTM结合UNet的最新paper,给苦于创新点的同学作参考,希望各位看完后可以有些启发,更快写出论文中稿。
论文原文+开源代码需要的同学看文末
xLSTM-UNet can be an Effective 2D & 3D Medical Image Segmentation Backbone with Vision-LSTM (ViL) better than its Mamba Counterpart
方法:论文提出了xLSTM-UNet,这是首个使用扩展长短期记忆(xLSTM)/ ViL增强的U-Net架构,可用于2D和3D医学图像分割任务。xLSTM-UNe