Android 在Activity中调用finish()方法,会走哪些生命周期方法?

看标题问题,你可能会想:这还不简单,在程序中调用finish(),Activity会继续调用onPause()、onStop()、onDestroy()方法。
其实错了,有坑。


1、在Activity的onCreate()中调用finish()方法,则执行的生命周期方法顺序为:
onCreate() -> onDestroy()




2、在Activity的onStart()中调用finish()方法,则执行的生命周期方法顺序为:
onCreate() -> onStart() -> onStop() -> onDestroy()




3、在Activity的onResume()或onPostResume()中调用finish()方法,则执行的生命周期方法顺序为:
onCreate() -> onStart() -> onResume() -> onPostResume() -> onPause() -> onStop() -> onDestroy()




其他方法可以正常执行。


了解这些是很有必要的。比喻我们项目中的一个场景:
启动app都会走LogoActivity页面,执行预处理操作,然后进入到MainActivity页面。
于是我在LogoActivity中做网络请求获取数据,在onPause()方法中设置app皮肤。
然而,发现另一个分支从onCreate()里面就调走了,而且调用了finish()方法。让我郁闷的是为什么不走onPause()方法呢?
其实就是上面的生命周期方法问题导致的。
### Pyramid Vision Transformer (PVT) 介绍 Pyramid Vision Transformer (PVT) 是一种用于计算机视觉任务的新型骨干网络架构,旨在替代传统的卷积神经网络(CNN)[^1]。该模型通过多尺度特征提取来增强对不同大小目标物体的理解能力。 #### 整体结构概述 整体上,PVT采用了金字塔式的分层设计,每一层都由若干个Transformer编码器构成[^2]。这种层次化的构建方法允许模型在同一时间处理来自多个分辨率下的输入数据,从而提高了对于复杂场景下细节信息捕捉的能力。 ```python class PyramidVisionTransformer(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], depths=[3, 4, 6, 3], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=nn.LayerNorm, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, pretrained=None): super().__init__() self.num_stages = len(depths) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(self.num_stages): patch_embed = PatchEmbed( img_size=img_size if isinstance(img_size, int) else img_size[i], patch_size=patch_size if isinstance(patch_size, int) else patch_size[i], in_chans=in_chans if isinstance(in_chans, int) else in_chans[i], embed_dim=embed_dims[i]) block = nn.ModuleList([Block( dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j]) for j in range(depths[i])]) setattr(self, f"patch_embed{i + 1}", patch_embed) setattr(self, f"block{i + 1}", block) cur += depths[i] self.norm = norm_layer(embed_dims[-1]) ``` 此代码片段展示了`PyramidVisionTransformer`类初始化函数的一部分逻辑,定义了各个阶段中的嵌入维度、深度以及其他超参数设置[^3]。 #### 应用领域 除了作为图像分类的基础框架外,PVT还被广泛应用于其他多种密集预测任务中,比如语义分割、对象检测等。这些应用场景得益于其强大的表征学习能力和灵活性,在不依赖于传统CNN操作的情况下实现了优异的表现效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值