论文笔记 Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

在这里插入图片描述

PVT的提出背景和目标

为了克服传统Transformer在计算机视觉任务中的一些局限性,本文提出了一种纯粹的Transformer骨干网络,称为Pyramid Vision Transformer (PVT)。这个网络旨在替代传统的卷积神经网络(CNN)骨干,应用于各种下游任务,包括图像级预测和像素级密集预测任务。

主要设计特点

PVT克服了传统Transformer的一些困难,具体通过以下三点实现:

  1. 高分辨率特征表示:PVT使用细粒度的图像块(即每块4×4像素)作为输入,从而能够学习高分辨率的表示,这对于密集预测任务(如目标检测和语义分割)至关重要。
  2. 逐渐缩小的金字塔结构:PVT引入了一个逐渐缩小的金字塔结构,随着网络的加深,逐渐减少Transformer的序列长度,从而显著降低计算成本。
  3. 空间缩减注意力机制(SRA):PVT采用了一种空间缩减注意力机制,在学习高分辨率特征时进一步减少资源消耗。

PVT的优势

  1. 全局感受野:相比传统的CNN骨干(图1(a)),它们的局部感受野随着网络深度增加,PVT始终生成全局感受野,这使其更适合于检测和分割任务。
  2. 金字塔结构的灵活性:相比于Vision Transformer (ViT)(图1(b)),由于PVT的先进金字塔结构,它可以更容易地插入到许多代表性的密集预测管道中,例如RetinaNet和Mask R-CNN。
  3. 完全无卷积的管道:通过将PVT与其他特定任务的Transformer解码器(如PVT+DETR)结合,可以构建一个完全无卷积的对象检测管道。根据作者的说法,这是第一个完全无卷积的对象检测管道。

总结

通过以上设计,PVT不仅能够替代CNN骨干,还能在各种视觉任务中提供更好的性能,特别是在需要高分辨率和多尺度特征的任务中。

主要贡献

  1. 提出Pyramid Vision Transformer (PVT)

    • PVT是第一个专门为各种像素级密集预测任务设计的纯Transformer骨干网络。
    • 通过将PVT与DETR(Deformable DETR)结合,可以构建一个端到端的对象检测系统,不需要卷积操作和手工设计的组件(如密集锚点和非极大值抑制(NMS))。
  2. 克服Transformer在密集预测中的困难

    • 通过设计逐渐缩小的金字塔结构和空间缩减注意力机制(SRA),解决了将Transformer用于密集预测任务时的许多困难。
    • 这些设计减少了Transformer的资源消耗,使PVT能够灵活地学习多尺度和高分辨率的特征。
  3. 在多种任务上的评估

    • 评估了PVT在多个不同任务上的表现,包括图像分类、目标检测、实例分割和语义分割,并与流行的ResNet和ResNeXt模型进行了比较。
    • 实验结果表明,在相似参数数量下,PVT在多个任务中表现优于现有的先进方法。例如,在使用RetinaNet进行目标检测时,PVT-Small在COCO val2017数据集上取得了40.4的平均精度(AP),比ResNet50高出4.1个百分点(40.4 vs. 36.3)。此外,PVT-Large取得了42.6的AP,比ResNeXt101-64x4d高出1.6个百分点,且参数量减少了30%。

总结

通过以上贡献,PVT不仅解决了传统Transformer在密集预测任务中的困难,还在多个任务中展现出优越的性能,证明了其作为新型视觉骨干网络的潜力。PVT的设计使得其在资源消耗、灵活性和性能方面均具有显著优势。

在这里插入图片描述

整体架构概述

PVT模型被分为四个阶段,每个阶段由一个补丁嵌入层和若干个Transformer编码器层组成。通过逐级缩小的金字塔结构,输出分辨率从高(4-stride)逐步缩小到低(32-stride)。

输入

输入是一张尺寸为 H × W × 3 H \times W \times 3 H×W×3的图像。首先,图像被分割成小块,每块的尺寸为 4×4 像素。

第一个阶段

  1. Patch Embedding(补丁嵌入)

    • 输入图像被分割成 H 4 × W 4 \frac{H}{4} \times \frac{W}{4} 4H×4W个补丁,每个补丁的尺寸为4×4像素。
    • 每个补丁被展平为一维向量,并通过一个线性层转换为维度为 C 1 C_1 C1的嵌入向量。
    • 补丁嵌入层输出的特征图大小为 H 4 × W 4 × C 1 \frac{H}{4} \times \frac{W}{4} \times C_1 4H×4
Pyramid Vision Transformer (PVT)是一种用于密集预测的通用backbone,它是一种基于Transformer的设计。PVT的整体架构包括了Transformer编码器和其他细节。PVT的设计使得它可以应用于图像分类、目标检测和实例分割等任务。 PVT的整体架构包括了Transformer编码器和其他细节。Transformer编码器是PVT的核心组件,它通过自注意力机制和全连接层来建模输入图像的关系。PVT还采用了金字塔结构,通过在不同尺度上应用Transformer来捕捉图像中的多尺度信息。这种金字塔结构可以提高PVT在密集预测任务中的性能。 PVT还提供了相应的代码实现,包括了图像分类、目标检测和实例分割的代码。这些代码可以帮助研究人员和开发者更好地理解和应用PVT模型。 论文地址:PVT-V1版本论文 源码地址:PVT-v1-torch源码<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [PVT论文精读:Pyramid Vision Transformer: A Versatile Backbone for Dense Predictionwithout ...](https://blog.csdn.net/qq_52053775/article/details/127700540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Pyramid Vision Transformer (PVT) 代码,用于密集预测的通用backbone](https://download.csdn.net/download/weixin_42715977/87625056)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions论文以及...](https://blog.csdn.net/m0_45971439/article/details/120495124)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值