inception v1
流程
- 整体框架
- 论文的目的
- 论文中的创新点
- keras代码实现
整体框架
- inception模块的设计
该论文加入inception模块,(b)相比于(a)来说,在3x3h和5x5的卷积前加入了1x1的卷积用来降维,也就是减少channel数,这样大大减少计算量。为什么要这样设计呢?因为inception v1之前的网络都是一条路走到黑,通过加深网络来提高准确率,但这样大大增加了计算量。而inception模块增加了网络的深度和宽度,利用小卷积,既增加网络结构的深度,又减少了计算量,还提高了网络的准确率。 - 网络结构表
从表中来看,除了inception模块,其他还是常规操作
论文的目的
- 减少计算参数量,减少训练时间
- 提高网络内部的资源利用率
- 既增加网络的深度又增加网络的宽度,还提升了准确率
论文中的创新点
- 1x1小卷积的提出,用于降维,减少了计算参数
- 最后使用了averagepool来适应网络的如何输入尺寸
- 加入了中间层输出分支,在较低层进行分类并进行梯度的反向传播
keras代码实现
import keras
from keras.layers import Input,Dense,Conv2D,MaxPool2D,BatchNormalization
from keras.layers import concatenate,AvgPool2D,Dropout,Flatten
from keras.models import Model
from keras.utils import plot_model
# inception模块
def Inception(inputs=None,filter1=None,kernel1=1,filter3=None,kernel3=3,filter5=None,kernel5=5):
# 1x1降维
_1x1 = Conv2D(filters=filter1[0],kernel_size=kernel1,padding="same",activation="relu")(inputs)
# 1x1降维
reduce_1x1_3 = Conv2D(filters=filter1[1],kernel_size=kernel1,padding="same",activation="relu")(inputs)
_3x3 = Conv2D(filters=filter3,kernel_size=kernel3,padding="same",activation="relu")(reduce_1x1_3)
# 1x1降维
reduce_1x1_5 = Conv2D(filters=filter1[2],kernel_size=kernel1,padding="same",activation="relu")(inputs)
_5x5 = Conv2D(filters=filter5,kernel_size=kernel5,padding="same",activation="relu")(reduce_1x1_5)
maxpool = MaxPool2D(pool_size=3,strides=1,padding="same")(inputs)
# 1x1降维
_1x1_max = Conv2D(filters=filter1[3],kernel_size=kernel1,padding="same",activation="relu")(maxpool)
# 在通道上合并
out = concatenate([_1x1,_3x3,_5x5,_1x1_max])
return out
# 分支输出模块
def output(net=None):
net = AvgPool2D(pool_size=5,strides=3,padding="valid")(net)
net = Conv2D(filters=128,kernel_size=1,strides=1,padding="valid",activation="relu")(net)
net = Dense(units=1024,activation="relu")(net)
net = Dropout(rate=0.7)(net)
out = Dense(units=1000,activation="softmax")(net)
return out
# 网络结构 --> 对着表看,很清晰
def Inception_v1():
inputs = Input(shape=(224, 224, 3))
net = Conv2D(filters=64, kernel_size=7,strides=2,padding="same",activation="relu")(inputs)
net = BatchNormalization()(net)
net = MaxPool2D(pool_size=3, strides=2, padding="same")(net)
net = Conv2D(filters=64, kernel_size=1,strides=1,padding="same",activation="relu")(net)
net = Conv2D(filters=192, kernel_size=3, strides=1,padding="same", activation="relu")(net)
net = BatchNormalization()(net)
net = MaxPool2D(pool_size=3, strides=2, padding="same")(net)
net = Inception(inputs=net,filter1=[64,96,16,32],filter3=128,filter5=32)
net = Inception(inputs=net,filter1=[128,128,32,64],filter3=192,filter5=96)
net = MaxPool2D(pool_size=3, strides=2, padding="same")(net)
net = Inception(inputs=net,filter1=[192,96,16,64],filter3=208,filter5=48)
out1 = output(net)
net = Inception(inputs=net,filter1=[160,112,24,64],filter3=224,filter5=64)
net = Inception(inputs=net,filter1=[128,128,24,64],filter3=256,filter5=64)
net = Inception(inputs=net,filter1=[112,144,32,64],filter3=288,filter5=64)
out2 = output(net)
net = Inception(inputs=net,filter1=[256,160,32,128],filter3=320,filter5=128)
net = MaxPool2D(pool_size=3, strides=2,padding="same")(net)
net = Inception(inputs=net,filter1=[256,160,32,128],filter3=320,filter5=32)
net = Inception(inputs=net,filter1=[384,192,48,128],filter3=384,filter5=48)
net = AvgPool2D(pool_size=7, strides=1,padding="valid")(net)
net = Flatten()(net)
net = Dropout(rate=0.4)(net)
out3 = Dense(units=1000, activation="softmax")(net)
model = Model(inputs=[inputs], outputs=[out1, out2, out3])
return model
# 画出结构图并保存
model = Inception_v1()
plot_model(model, to_file='model.png',show_shapes=True,dpi=150)
- 网络结构图
- 每天进步一点点