# -*- coding: utf-8 -*-
'''
Created on 2018年1月24日
@author: Jason.F
@summary: 有监督回归学习-RANSAC拟合高鲁棒性回归模型
高鲁棒性线性回归器是一种清楚异常值的学习模型,采用随机抽样一致性(RANdom SAmple Consensus,RANSAC),使用数据的内点(inlier,数据集的子集)进行回归模型的拟合
算法流程:
1)从数据集中随机抽取样本构建内点集合来拟合模型
2)使用剩余数据对上一步得到的模型进行测试,并将落差在预定公差范围内的样本点增至内点集合中
3)使用全部的内点集合再次进行模型的拟合
4)使用内点集合来估计模型的误差
5)如果模型性能达到设定的阈值或迭代达到预定次数,则算法终止,否则跳转到第一步
使用RANSAC降低数据集中异常点的潜在影响,但不确定剔除掉异常数据对预测性能存在的影响。
'''
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import RANSACRegressor
from sklearn.linear_model.base import LinearRegression
#导入波士顿房屋数据集
df=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data',header=None,sep='\s+')
df.columns=['CRIM','ZM','INDUS','CHAS','NOX','RM','
【Python-ML】SKlearn库RANSAC拟合高鲁棒性回归模型
最新推荐文章于 2025-03-26 14:13:36 发布