【转载】【Python-ML】SKlearn库谱聚类SpectralClustering模型

      在scikit-learn的类库中,sklearn.cluster.SpectralClustering实现了基于Ncut的谱聚类,没有实现基于RatioCut的切图聚类。同时,对于相似矩阵的建立,也只是实现了基于K邻近法和全连接法的方式,没有基于ϵ-邻近法的相似矩阵。最后一步的聚类方法则提供了两种,K-Means算法和 discretize算法。

       SpectralClustering的参数解释如下:

代码示例:

 

import time
from sklearn.cluster import SpectralClustering
from sklearn import metrics

if __name__ == "__main__":    
    start = time.clock() 
    #X是训练集
    
    for index, gamma in enumerate((0.01,0.1,1)):
        for index, k in enumerate((3,4,5,6)):
            y_pred = SpectralClustering(n_clusters=k, gamma=gamma).fit_predict(X)
            print "Calinski-Harabasz Score with gamma=", gamma, "n_clusters=", k,"score:", metrics.calinski_harabaz_score(X, y_pred) 
                          
    end = time.clock()    
    print('finish all in %s' % str(end - start))

引自:https://www.cnblogs.com/pinard/p/6235920.html

代码本地调试过。

发布了829 篇原创文章 · 获赞 278 · 访问量 307万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术工厂 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览