跟我一起学Multiple View Geometry多视图几何(6)

  前言:至此我们已经讨论了Fundamental matrix的几个重要性质和基于点对x<->x’的图像关系,今天我们来学习如何从F中推导出两个相机矩阵P和P’。

9.5 推导相机矩阵

9.5.1 Projective invariance(投影不变) and canonical cameras

  从上一篇编程实践课中我们可以清晰地感觉到,F是从x与x’的对应关系中求出来的,现在我们如果把相机移动一点,即使x与x’坐标都一起变了,算出来的F应该是一样的,所以我们就可以想到其实F与世界坐标系选择无关,比如把世界坐标系旋转后改变的只是P和P’,F不会变,所以我们断言:在三维空间的投影变换不会改变F的大小。

  Result 9.8:如果H是三维空间里的一个4*4投影变换矩阵,那么相机矩阵P和P’所对应的Fundamental matrix和PH和P’H对应的Fundamental matrix是一样的。
证明很简单,,同理x’的也有类似形式,所以的关系就相当于

  所以我们知道一对相机矩阵(P,P’)唯一确定F, 而一个F确定了一组相机矩阵,这组相机矩阵可以从其中任意一组投影变换得到。

  Result9.9:对应于一组相机矩阵P=[I | 0]和P’=[M | m]的Fundamental matrix等于,其中m是个三维向量,大家还记得中括号下标×的含义吗?如果 那么

9.5.2 Projective ambiguity of cameras given F

  我们从上面看出一个Fundamental matrix确定了一组互为投影变换的相机矩阵,下面我们会学到给定的一个Fundamental matrix所确定的一系列相机矩阵(P,P’)相当于右乘一个投影变换矩阵,因此Fundamental matrix本质上来说确定的是相机之间的投影关系。

  Theorem 9.10:假设F是两组相机矩阵(P,P’)和(P1,P1’)对对应的同一个Fundamental matrix,那么一定存在一个非奇异4*4矩阵H满足:P1=PH, P1’=P1’H。证明略。

  Lemma 9.11:如果一个秩为2的矩阵F可以被分解成两种:,那么一定存在非零的a和三维向量v满足:a1=ka和
  我们现在把Lemma 9.11用到Theorem 9.10里面:假设P’和P1’是产生同一个F的相机矩阵,,上下的就只需要证明这两对相机矩阵是投影相关的就行了,假设,我们就有:,进而:
                        
所以(P,P’)和(P1,P1’)确实是投影相关的。

  一对相机矩阵P和P’各自含有11个自由度,总共22个自由度,为了确定一个投影空间需要15个自由度,22-15=7,这个7就是Fundamental matrix的自由度。

9.5.3 Canonical cameras given F

  现在我们已经学习了F确定的的一系列互为投影变换的相机矩阵,我们下面推导给定F的时候推算出一堆相机矩阵的标准形式。我们先会用到下面的关于一对相机矩阵的F的描述:

  Result 9.12:一个非零矩阵F是一对相机矩阵(P,P’)对应的Fundamental matrix的充要条件是是反对称矩阵。

  我们从一个Fundamental matrix可以写出一对特定的相机矩阵:P=[I | 0],P’=[SF | e’],其中e’是epipole,所以

  我们有: ,它是反对称矩阵。

  Result 9.14 对应于一个F的一对相机矩阵可以选择为:

  结合上面的Theorem 9.10,我们得到如下结论:

  对应于一个Fundamental matrix F的相机矩阵一般形式为:
                                

其中:v是一个三维向量,λ是一个非零数。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值