几何角度理解线性代数(1):向量、线性组合、矩阵乘法、行列式

几何角度理解线性代数(1):向量、线性组合、矩阵乘法、行列式

本笔记主要基于三蓝一棕的视频进行记录。

原视频系列之一的链接为:06 - 逆矩阵、列空间与零空间_哔哩哔哩_bilibili

Take Home Me ssage

矩阵乘法与线性变换

我们可以将矩阵的列看作变换后的基向量,而将矩阵乘法看作是变换后的基向量的线性组合:
在这里插入图片描述

矩阵乘法与线性变换复合

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-geAtkDor-1661603012178)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/fa6a978a-f4f6-418a-8a50-868e56bef1c3/Untitled.png)]

行列式

行列式的几何表示:
在这里插入图片描述

此外,再对三维空间中行列式的几何含义,以及右手定则与左手定则进行简单的介绍:
在这里插入图片描述

左手定则:
在这里插入图片描述

向量的基本表示

点与向量的表示:
在这里插入图片描述

线性组合、张成的空间与基

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6MixklDa-1661603012180)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/44645fdd-5b64-46fa-88bf-c29e798ce9f8/Untitled.png)]
在这里插入图片描述

如果引入的第三个向量基恰好落在前两个向量所span成的平面中,那么意味着,第三个向量的引入,并不会使得span的空间更进一步。

而如果引入的第3个向量没有落在前两个向量所长成的空间之中,或者说平面之中。那么我们可以想象,如果固定了这个平面,而第3个向量在某一个方向上面进行缩放的话,那么相当于就是在第3个向量所表示的方向上,前两个向量所张成的平面在不停的移动。进而,这三个不共面的向量可以触及到三维空间中每一个点。也就是说这三个向量所张成的空间可以触及到三维空间中的每一个点。

我们回顾之前所提到的一种情况:如果第3个向量正好落在了前面两个向量所张成的平面上,那么意味着这个向量的加入,对于所张成的空间并无贡献。对于这种情况,我们称其为线性相关。或者说,我们可以认为这第3个向量是能够表示为前面两个向量的线性组合的,想一想为什么?答案是因为这个向量已经落在了前面两个向量所张成的空间,或者说平面之中,那么自然就可以用前面两个向量线性组合的方式进行第三个向量的表达。示意图见下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-X7vxPHhI-1661603012181)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/9b576338-c086-4fea-abd5-5f1efe0e6c0e/Untitled.png)]

那么自然,如果第3个向量的引入能够帮助所张成的空间更大一些的话,我们就称这个向量与前面两个向量是线性无关的,示意图见下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VmmAHtMk-1661603012182)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/18bbf500-262f-4cdf-9b17-36061f2f72f4/Untitled.png)]

此时我们就可以给出基的基本定义:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pBkbAeqE-1661603012182)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/84b51aed-ec30-45ac-9c5f-e28f244fdd1e/Untitled.png)]

此外,在某些数学教材中,更倾向于将三个基的线性无关定义为:

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tHg9SZLM-1661603012183)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/0ea33569-0be2-4487-b2a4-72d0a0a520c9/Untitled.png)]

矩阵与线性变换

我们首先要有一个认知,就是矩阵是作用于向量上的,那么矩阵变换相当于是”函数“一种更新潮的说法。他能够让一个输入向量,通过矩阵变换变为另外一个向量,示意图如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-U5YSGnoX-1661603012183)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/d060e8a9-207b-4b11-ad9a-938efde2c295/Untitled.png)]

一种比较典型又比较简单的变换叫做线性变换。

那么线性变换,拥有着以下几个性质:

  1. 对于原本空间而言,直线在经过线性变换之后仍然保持为直线;
  2. 原点是固定的。

简单来讲可以把线性变换看作是保持网格线平行且等距分布的变化:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CfFqDyxg-1661603012183)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/35f1e452-b5be-427b-b93c-ac6e1bb2e732/Untitled.png)]

接下来我们思考一下如何用数值来描述这种线性变化:

在这里插入图片描述

实际上我们只要记住 i i i方向的单位向量,以及 j j j方向的单位向量经过这种变换之后所在的位置,就可以进而得到所有向量在经过这种线性变换之后得到的结果。为什么这么说呢?是因为如果经过了线性变换的话,原先的向量是怎样的原先的基的线性组合,那么变换之后仍然是变换后的基的线性组合,而变换前后,这线性组合中的标量系数是一致的:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5zQzAZa9-1661603012184)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/4900d9e0-f4c7-4896-9dfd-6872234ece1a/Untitled.png)]

此时,线性变换的数值表示为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-i0k8Qies-1661603012184)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/cba886ab-1793-49fe-8710-71baf2bd1d3f/Untitled.png)]

更为通用的表示为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kL4opWD3-1661603012184)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/3af6e28f-4d83-4cd0-91dc-0c6209289f94/Untitled.png)]

总之,我们可以将矩阵的列看作变换后的基向量,而将矩阵乘法看作是变换后的基向量的线性组合:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l5tWCVrr-1661603012184)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/4f054615-1860-460e-97b9-678459975aa4/Untitled.png)]

此外还有一个有意思的现象,就是如果变换后的基向量是线性相关的,那么变换后所张成的空间也就变成了一条直线:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ER67lZ30-1661603012185)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/c7fbd690-2491-4ee1-be06-b9720bd10cc5/Untitled.png)]

矩阵乘法与线性复合变换

复合变化可以直观的表示为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7rRbOpuM-1661603012185)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/42d86f9b-6d68-4a67-bb00-2d96462184cd/Untitled.png)]
需要注意的是,矩阵需要从右往左读:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GQbbtAiY-1661603012186)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/188bf7a1-e2f8-4c8a-aa66-16a690c27998/Untitled.png)]

在思考通用数值表达的过程中,一种直观的思路是考虑挨i方向上的基向量与J方向的基向量是如何变换的:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fqXGyY8q-1661603012186)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/76a5b0da-ebb4-4e2a-a676-64a12e6ddefa/Untitled.png)]

那么在三维空间,复合线性变换可以表示为:
在这里插入图片描述

行列式

仍然从二维的角度来看,行列式在几何上直观的感受是基组合所包围的面积,即:
在这里插入图片描述

一种特殊情况是:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Lifivggk-1661603012186)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/7c5a0b57-0f69-40ce-a1f0-7a954cb043ad/Untitled.png)]

如果行列式的值出现了负数,通常代表着变换的基的相对方向产生了改变,比如说在变化之前i方向的基在j方向的基的右边,那么变换之后,如果i方向的基在j方向的基的左边的话,变换矩阵的行列式的值就会变成一个负值。直观上来想,可以想象成是一个平面进行了翻转。注意,即使是负值,行列式的值仍然代表着区域面积的缩放比例。

直观上来看,行列式的值,或者说面积,会在基随着下图中红色箭头的示意图进行变化的时候,慢慢从正数变到负数:
在这里插入图片描述

行列式的几何直观感受,扩展到三维情况之后,有:在这里插入图片描述
同时,对于三维空间变换时,如果行列式出现了负值,就表示三维基坐标,我们无法使用右手定则来表示。
在这里插入图片描述

行列式的数值计算方式和几何含义分别是
在这里插入图片描述
在这里插入图片描述

扩展到三维的矩阵计算方式是:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XjymEPAK-1661603012187)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/d1242e99-53bf-4908-81dd-385278950d11/Untitled.png)]

此外,关于行列式的一条有用的性质是:在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 线性代数是现代数学基础之一,它是研究向量空间(或线性空间)及其变换的代数理论。线性代数涉及到很多的概念和算法,如矩阵行列式向量向量空间、基、线性变换等。 其中,线性代数中的几何意义是指在空间中通过向量的方法来描述几何图形,通过矩阵向量的变换来描述不同坐标系之间的关系。这种方法是在欧几里得几何的基础上推广而来的。 具体来说,线性代数几何意义应用很广泛,如计算机图形学、机器学习等,都是基于线性代数几何意义来进行计算和预测的。在计算机图形学中,矩阵向量的变换可以用来描述2D或3D图形的旋转、平移和缩放等。而机器学习中,线性回归、主成分分析等算法则是利用向量的计算和矩阵的运算来进行数据处理和预测。 因此,掌握线性代数几何意义,对于计算机科学的学习和应用都是极其重要的。无论是在图形处理、数据挖掘、机器学习等方向,对于线性代数的深入理解都会大大提高计算机科学的水平和应用创新。 ### 回答2: 线性代数几何意义是指将线性代数的概念和理论应用于几何问题的方法和思想。线性代数几何密切相关,其中许多定义和定理都可以用几何的方式解释和理解。这种几何意义的应用一方面可以为线性代数提供更直观的理解和说明,另一方面也可以为几何学提供更精确严谨的工具和方法。 在线性代数中,向量矩阵是最基本和重要的概念之一。在几何意义上,向量可以表示为一个有方向的线段,可以用来描述物体在空间中的位置和移动。矩阵则可以看作是一系列向量组合,在几何中可以表示为一个坐标系或者描述变换的矩阵矩阵的特征值和特征向量也有重要的几何意义,可以用来描述变换的方向和大小。 线性代数的一些重要定理和方法也可以应用于几何问题。例如,矩阵的秩可以用来描述坐标系中向量线性相关性和平面的维数;矩阵行列式可以用来判断坐标系中向量的方向和面积;矩阵的逆可以用来表示空间中的逆变换等。 总之,线性代数几何意义的应用可以极大地丰富几何学的内容和方法,同时也为线性代数的学习提供更为具体和形象的例证和解释。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FLOWVERSE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值