DeepSORT(目标跟踪算法)中卡尔曼滤波器中的预测
flyfish
先略再详,先简洁的说,再细说。
卡尔曼滤波器的预测步骤主要有两个目标:
- 预测下一时刻的状态向量:根据当前状态和运动模型,预测对象在下一时刻的位置和速度。
- 更新协方差矩阵:根据运动模型和过程噪声,更新预测的状态不确定性。
两个重要的点
- 运动模型:由状态转移矩阵 F \mathbf{F} F 描述,在代码中是 self._motion_mat。
- 过程噪声:由过程噪声协方差矩阵 Q \mathbf{Q} Q 描述,在代码中是 motion_cov。
predict 函数
def predict(self, mean, covariance):
"""执行卡尔曼滤波的预测步骤。
参数
----------
mean : ndarray
前一时间步长中对象状态的8维均值向量。
covariance : ndarray
前一时间步长中对象状态的8x8维协方差矩阵。
返回
-------
(ndarray, ndarray)
返回预测状态的均值向量和协方差矩阵。未观测到的速度初始化为0均值。
"""
std_pos = [
self._std_weight_position * mean[3],
self._std_weight_position * mean[3],
1e-2,
self._std_weight_position * mean[3]]
std_vel = [
self._std_weight_velocity * mean[3],
self._std_weight_velocity * mean[3],
1e-5,
self._std_weight_velocity * mean[3]]
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
mean = np.dot(self._motion_mat, mean)
covariance = np.linalg.multi_dot((
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
return mean, covariance
预测步骤详解
- 过程噪声的标准差计算:
std_pos = [
self._std_weight_position * mean[3],
self._std_weight_position * mean[3],
1e-2,
self._std_weight_position * mean[3]]
std_vel = [
self._std_weight_velocity * mean[3],
self._std_weight_velocity * mean[3],
1e-5,
self._std_weight_velocity * mean[3]]
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
- std_pos 和 std_vel 分别是位置和速度的不确定性的标准差。这些标准差基于当前状态中的高度(mean[3])和预定义的权重系数 _std_weight_position 和 _std_weight_velocity 计算得出。
- motion_cov 是过程噪声的协方差矩阵,表示由于模型的不确定性而引入的噪声。代码中过程噪声协方差矩阵 motion_cov 是一个对角矩阵, motion_cov 是对角矩阵,其中对角线元素是位置和速度标准差的平方,即方差。
这些方差值是根据当前状态中的高度(mean[3])和预定义的权重系数 _std_weight_position 和 _std_weight_velocity 计算得出的。
- 预测状态均值:
mean = np.dot(self._motion_mat, mean)
- 使用状态转移矩阵 _motion_mat 对当前状态均值 mean 进行线性变换,预测下一时刻的状态均值。
- 预测协方差矩阵:
covariance = np.linalg.multi_dot((
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
- 使用状态转移矩阵 _motion_mat 更新协方差矩阵 covariance,并加上过程噪声的协方差矩阵 motion_cov,以反映由于运动模型和过程噪声引入的不确定性。
预测的内容
- 状态均值(mean):包含对象的预测位置和速度。这表示根据当前状态和运动模型,预测对象在下一时刻的位置和速度。
- 协方差矩阵(covariance):描述状态均值的不确定性。通过状态转移矩阵和过程噪声的更新,反映预测的不确定性。
具体理解过程噪声
假设当前状态的高度(mean[3])为 h h h,过程噪声的标准差为:
-
位置不确定性:_std_weight_position * h
-
速度不确定性:_std_weight_velocity * h
如果这些权重分别为 1 20 \frac{1}{20} 201 和 1 160 \frac{1}{160} 1601,则过程噪声的方差(对角线元素)为: -
位置不确定性方差: ( h 20 ) 2 (\frac{h}{20})^2 (20h)2
-
速度不确定性方差: ( h 160 ) 2 (\frac{h}{160})^2 (160h)2
过程噪声的含义
- 未建模的动态变化:
- 系统中可能存在某些动态变化,未在运动模型中被完全描述。例如,在追踪一个行人时,行人可能会突然改变速度或方向,这种变化是无法通过简单的线性运动模型预测的。
- 外部扰动:
- 过程噪声也可以包括由于外部环境引起的扰动。例如,风、地形变化或其他物体的干扰都会影响对象的实际运动。
- 系统内在的不确定性:
- 即使在系统设计时考虑了所有已知的因素,实际系统中仍然存在一些内在的不确定性。例如,机械部件的磨损、传感器的精度限制等。
过程噪声在卡尔曼滤波中的作用
在卡尔曼滤波器的预测步骤中,过程噪声被加到预测的协方差矩阵上,用于反映由于这些不确定性引入的额外误差。它使得卡尔曼滤波器在更新步骤中对新观测数据的调整更为灵活。
综述
- 过程噪声:代表系统在预测时的内在不确定性和外部扰动,描述了模型预测误差的来源。
- 作用:在卡尔曼滤波的预测步骤中,通过增加协方差矩阵,反映预测的额外不确定性,使得滤波器更灵活地适应新观测数据。
- 计算:在代码中通过标准差计算并构建成对角协方差矩阵 motion_cov,反映了位置和速度的过程噪声。
过程噪声是卡尔曼滤波器的重要组成部分,确保了滤波器在面对现实世界的不确定性时具有鲁棒性。
状态均值预测公式
状态均值预测公式为:
x
k
∣
k
−
1
=
F
x
k
−
1
∣
k
−
1
\mathbf{x}_{k|k-1} = \mathbf{F} \mathbf{x}_{k-1|k-1}
xk∣k−1=Fxk−1∣k−1
(这里不理解,没问题,因为下面会将公式展开,就容易理解了)
在代码中,这一部分实现为:
mean = np.dot(self._motion_mat, mean)
具体展开成详细的形式是:
假设当前状态均值向量 x k − 1 ∣ k − 1 \mathbf{x}_{k-1|k-1} xk−1∣k−1 为:
x k − 1 ∣ k − 1 = [ x y a h v x v y v a v h ] \mathbf{x}_{k-1|k-1} = \begin{bmatrix} x \\ y \\ a \\ h \\ vx \\ vy \\ va \\ vh \end{bmatrix} xk−1∣k−1= xyahvxvyvavh
状态转移矩阵
F
\mathbf{F}
F 为:
[
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
]
\begin{bmatrix}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
1000000001000000001000000001000010001000010001000010001000010001
那么,预测的状态均值
x
k
∣
k
−
1
\mathbf{x}_{k|k-1}
xk∣k−1为:
x
k
∣
k
−
1
=
F
x
k
−
1
∣
k
−
1
=
[
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
]
[
x
y
a
h
v
x
v
y
v
a
v
h
]
\mathbf{x}_{k|k-1} = \mathbf{F} \mathbf{x}_{k-1|k-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ a \\ h \\ vx \\ vy \\ va \\ vh \end{bmatrix}
xk∣k−1=Fxk−1∣k−1=
1000000001000000001000000001000010001000010001000010001000010001
xyahvxvyvavh
计算结果是:
x
k
∣
k
−
1
=
[
x
+
v
x
y
+
v
y
a
+
v
a
h
+
v
h
v
x
v
y
v
a
v
h
]
\mathbf{x}_{k|k-1} = \begin{bmatrix} x + vx \\ y + vy \\ a + va \\ h + vh \\ vx \\ vy \\ va \\ vh \end{bmatrix}
xk∣k−1=
x+vxy+vya+vah+vhvxvyvavh
即,新的位置通过加上速度得到,而速度保持不变。
协方差矩阵预测公式
P
k
∣
k
−
1
=
F
P
k
−
1
∣
k
−
1
F
⊤
+
Q
\mathbf{P}_{k|k-1} = \mathbf{F} \mathbf{P}_{k-1|k-1} \mathbf{F}^\top + \mathbf{Q}
Pk∣k−1=FPk−1∣k−1F⊤+Q
在代码中,这一部分实现为:
covariance = np.linalg.multi_dot((
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
具体展开成详细的形式是:
假设当前协方差矩阵
P
k
−
1
∣
k
−
1
\mathbf{P}_{k-1|k-1}
Pk−1∣k−1为:
P
k
−
1
∣
k
−
1
=
[
P
x
x
P
x
y
P
x
a
P
x
h
P
x
v
x
P
x
v
y
P
x
v
a
P
x
v
h
P
x
y
P
y
y
P
y
a
P
y
h
P
y
v
x
P
y
v
y
P
y
v
a
P
y
v
h
P
x
a
P
y
a
P
a
a
P
a
h
P
a
v
x
P
a
v
y
P
a
v
a
P
a
v
h
P
x
h
P
y
h
P
a
h
P
h
h
P
h
v
x
P
h
v
y
P
h
v
a
P
h
v
h
P
x
v
x
P
y
v
x
P
a
v
x
P
h
v
x
P
v
x
v
x
P
v
x
v
y
P
v
x
v
a
P
v
x
v
h
P
x
v
y
P
y
v
y
P
a
v
y
P
h
v
y
P
v
x
v
y
P
v
y
v
y
P
v
y
v
a
P
v
y
v
h
P
x
v
a
P
y
v
a
P
a
v
a
P
h
v
a
P
v
x
v
a
P
v
y
v
a
P
v
a
v
a
P
v
a
v
h
P
x
v
h
P
y
v
h
P
a
v
h
P
h
v
h
P
v
x
v
h
P
v
y
v
h
P
v
a
v
h
P
v
h
v
h
]
\mathbf{P}_{k-1|k-1} = \begin{bmatrix} P_{xx} & P_{xy} & P_{xa} & P_{xh} & P_{xvx} & P_{xvy} & P_{xva} & P_{xvh} \\ P_{xy} & P_{yy} & P_{ya} & P_{yh} & P_{yvx} & P_{yvy} & P_{yva} & P_{yvh} \\ P_{xa} & P_{ya} & P_{aa} & P_{ah} & P_{avx} & P_{avy} & P_{ava} & P_{avh} \\ P_{xh} & P_{yh} & P_{ah} & P_{hh} & P_{hvx} & P_{hvy} & P_{hva} & P_{hvh} \\ P_{xvx} & P_{yvx} & P_{avx} & P_{hvx} & P_{vxvx} & P_{vxvy} & P_{vxva} & P_{vxvh} \\ P_{xvy} & P_{yvy} & P_{avy} & P_{hvy} & P_{vxvy} & P_{vyvy} & P_{vyva} & P_{vyvh} \\ P_{xva} & P_{yva} & P_{ava} & P_{hva} & P_{vxva} & P_{vyva} & P_{vava} & P_{vavh} \\ P_{xvh} & P_{yvh} & P_{avh} & P_{hvh} & P_{vxvh} & P_{vyvh} & P_{vavh} & P_{vhvh} \end{bmatrix}
Pk−1∣k−1=
PxxPxyPxaPxhPxvxPxvyPxvaPxvhPxyPyyPyaPyhPyvxPyvyPyvaPyvhPxaPyaPaaPahPavxPavyPavaPavhPxhPyhPahPhhPhvxPhvyPhvaPhvhPxvxPyvxPavxPhvxPvxvxPvxvyPvxvaPvxvhPxvyPyvyPavyPhvyPvxvyPvyvyPvyvaPvyvhPxvaPyvaPavaPhvaPvxvaPvyvaPvavaPvavhPxvhPyvhPavhPhvhPvxvhPvyvhPvavhPvhvh
过程噪声协方差矩阵
Q
\mathbf{Q}
Q 为:
Q
=
m
o
t
i
o
n
_
c
o
v
=
[
σ
x
2
0
0
0
0
0
0
0
0
σ
y
2
0
0
0
0
0
0
0
0
σ
a
2
0
0
0
0
0
0
0
0
σ
h
2
0
0
0
0
0
0
0
0
σ
v
x
2
0
0
0
0
0
0
0
0
σ
v
y
2
0
0
0
0
0
0
0
0
σ
v
a
2
0
0
0
0
0
0
0
0
σ
v
h
2
]
\mathbf{Q} = {motion\_cov} = \begin{bmatrix} \sigma_{x}^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{y}^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{a}^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{h}^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{vx}^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_{vy}^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{va}^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{vh}^2 \end{bmatrix}
Q=motion_cov=
σx200000000σy200000000σa200000000σh200000000σvx200000000σvy200000000σva200000000σvh2
这个公式表示当前时刻的协方差矩阵通过状态转移矩阵左乘和右乘后,加上过程噪声协方差矩阵,得到下一时刻的协方差矩阵。
我们已经计算了 F P k − 1 ∣ k − 1 \mathbf{F} \mathbf{P}_{k-1|k-1} FPk−1∣k−1 的部分,现在继续计算 F P k − 1 ∣ k − 1 F ⊤ \mathbf{F} \mathbf{P}_{k-1|k-1} \mathbf{F}^\top FPk−1∣k−1F⊤。
计算 ( F P k − 1 ∣ k − 1 ) F ⊤ (\mathbf{F} \mathbf{P}_{k-1|k-1}) \mathbf{F}^\top (FPk−1∣k−1)F⊤
我们之前得到了:
F
P
k
−
1
∣
k
−
1
=
[
P
x
x
+
P
x
v
x
P
x
y
+
P
x
v
y
P
x
a
+
P
x
v
a
P
x
h
+
P
x
v
h
P
x
v
x
P
x
v
y
P
x
v
a
P
x
v
h
P
x
y
+
P
y
v
x
P
y
y
+
P
y
v
y
P
y
a
+
P
y
v
a
P
y
h
+
P
y
v
h
P
y
v
x
P
y
v
y
P
y
v
a
P
y
v
h
P
x
a
+
P
a
v
x
P
y
a
+
P
a
v
y
P
a
a
+
P
a
v
a
P
a
h
+
P
a
v
h
P
a
v
x
P
a
v
y
P
a
v
a
P
a
v
h
P
x
h
+
P
h
v
x
P
y
h
+
P
h
v
y
P
a
h
+
P
h
v
a
P
h
h
+
P
h
v
h
P
h
v
x
P
h
v
y
P
h
v
a
P
h
v
h
P
x
v
x
P
y
v
x
P
a
v
x
P
h
v
x
P
v
x
v
x
P
v
x
v
y
P
v
x
v
a
P
v
x
v
h
P
x
v
y
P
y
v
y
P
a
v
y
P
h
v
y
P
v
x
v
y
P
v
y
v
y
P
v
y
v
a
P
v
y
v
h
P
x
v
a
P
y
v
a
P
a
v
a
P
h
v
a
P
v
x
v
a
P
v
y
v
a
P
v
a
v
a
P
v
a
v
h
P
x
v
h
P
y
v
h
P
a
v
h
P
h
v
h
P
v
x
v
h
P
v
y
v
h
P
v
a
v
h
P
v
h
v
h
]
\mathbf{F} \mathbf{P}_{k-1|k-1} = \begin{bmatrix} P_{xx} + P_{xvx} & P_{xy} + P_{xvy} & P_{xa} + P_{xva} & P_{xh} + P_{xvh} & P_{xvx} & P_{xvy} & P_{xva} & P_{xvh} \\ P_{xy} + P_{yvx} & P_{yy} + P_{yvy} & P_{ya} + P_{yva} & P_{yh} + P_{yvh} & P_{yvx} & P_{yvy} & P_{yva} & P_{yvh} \\ P_{xa} + P_{avx} & P_{ya} + P_{avy} & P_{aa} + P_{ava} & P_{ah} + P_{avh} & P_{avx} & P_{avy} & P_{ava} & P_{avh} \\ P_{xh} + P_{hvx} & P_{yh} + P_{hvy} & P_{ah} + P_{hva} & P_{hh} + P_{hvh} & P_{hvx} & P_{hvy} & P_{hva} & P_{hvh} \\ P_{xvx} & P_{yvx} & P_{avx} & P_{hvx} & P_{vxvx} & P_{vxvy} & P_{vxva} & P_{vxvh} \\ P_{xvy} & P_{yvy} & P_{avy} & P_{hvy} & P_{vxvy} & P_{vyvy} & P_{vyva} & P_{vyvh} \\ P_{xva} & P_{yva} & P_{ava} & P_{hva} & P_{vxva} & P_{vyva} & P_{vava} & P_{vavh} \\ P_{xvh} & P_{yvh} & P_{avh} & P_{hvh} & P_{vxvh} & P_{vyvh} & P_{vavh} & P_{vhvh} \end{bmatrix}
FPk−1∣k−1=
Pxx+PxvxPxy+PyvxPxa+PavxPxh+PhvxPxvxPxvyPxvaPxvhPxy+PxvyPyy+PyvyPya+PavyPyh+PhvyPyvxPyvyPyvaPyvhPxa+PxvaPya+PyvaPaa+PavaPah+PhvaPavxPavyPavaPavhPxh+PxvhPyh+PyvhPah+PavhPhh+PhvhPhvxPhvyPhvaPhvhPxvxPyvxPavxPhvxPvxvxPvxvyPvxvaPvxvhPxvyPyvyPavyPhvyPvxvyPvyvyPvyvaPvyvhPxvaPyvaPavaPhvaPvxvaPvyvaPvavaPvavhPxvhPyvhPavhPhvhPvxvhPvyvhPvavhPvhvh
接下来,计算这个矩阵与
F
⊤
\mathbf{F}^\top
F⊤ 的乘积:
F
⊤
=
[
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
]
\mathbf{F}^\top = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}
F⊤=
1000100001000100001000100001000100001000000001000000001000000001
进行矩阵乘法:
(
F
P
k
−
1
∣
k
−
1
)
F
⊤
=
[
P
x
x
+
P
x
v
x
P
x
y
+
P
x
v
y
P
x
a
+
P
x
v
a
P
x
h
+
P
x
v
h
P
x
v
x
P
x
v
y
P
x
v
a
P
x
v
h
P
x
y
+
P
y
v
x
P
y
y
+
P
y
v
y
P
y
a
+
P
y
v
a
P
y
h
+
P
y
v
h
P
y
v
x
P
y
v
y
P
y
v
a
P
y
v
h
P
x
a
+
P
a
v
x
P
y
a
+
P
a
v
y
P
a
a
+
P
a
v
a
P
a
h
+
P
a
v
h
P
a
v
x
P
a
v
y
P
a
v
a
P
a
v
h
P
x
h
+
P
h
v
x
P
y
h
+
P
h
v
y
P
a
h
+
P
h
v
a
P
h
h
+
P
h
v
h
P
h
v
x
P
h
v
y
P
h
v
a
P
h
v
h
P
x
v
x
P
y
v
x
P
a
v
x
P
h
v
x
P
v
x
v
x
P
v
x
v
y
P
v
x
v
a
P
v
x
v
h
P
x
v
y
P
y
v
y
P
a
v
y
P
h
v
y
P
v
x
v
y
P
v
y
v
y
P
v
y
v
a
P
v
y
v
h
P
x
v
a
P
y
v
a
P
a
v
a
P
h
v
a
P
v
x
v
a
P
v
y
v
a
P
v
a
v
a
P
v
a
v
h
P
x
v
h
P
y
v
h
P
a
v
h
P
h
v
h
P
v
x
v
h
P
v
y
v
h
P
v
a
v
h
P
v
h
v
h
]
[
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
]
(\mathbf{F} \mathbf{P}_{k-1|k-1}) \mathbf{F}^\top = \begin{bmatrix} P_{xx} + P_{xvx} & P_{xy} + P_{xvy} & P_{xa} + P_{xva} & P_{xh} + P_{xvh} & P_{xvx} & P_{xvy} & P_{xva} & P_{xvh} \\ P_{xy} + P_{yvx} & P_{yy} + P_{yvy} & P_{ya} + P_{yva} & P_{yh} + P_{yvh} & P_{yvx} & P_{yvy} & P_{yva} & P_{yvh} \\ P_{xa} + P_{avx} & P_{ya} + P_{avy} & P_{aa} + P_{ava} & P_{ah} + P_{avh} & P_{avx} & P_{avy} & P_{ava} & P_{avh} \\ P_{xh} + P_{hvx} & P_{yh} + P_{hvy} & P_{ah} + P_{hva} & P_{hh} + P_{hvh} & P_{hvx} & P_{hvy} & P_{hva} & P_{hvh} \\ P_{xvx} & P_{yvx} & P_{avx} & P_{hvx} & P_{vxvx} & P_{vxvy} & P_{vxva} & P_{vxvh} \\ P_{xvy} & P_{yvy} & P_{avy} & P_{hvy} & P_{vxvy} & P_{vyvy} & P_{vyva} & P_{vyvh} \\ P_{xva} & P_{yva} & P_{ava} & P_{hva} & P_{vxva} & P_{vyva} & P_{vava} & P_{vavh} \\ P_{xvh} & P_{yvh} & P_{avh} & P_{hvh} & P_{vxvh} & P_{vyvh} & P_{vavh} & P_{vhvh} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
(FPk−1∣k−1)F⊤=
Pxx+PxvxPxy+PyvxPxa+PavxPxh+PhvxPxvxPxvyPxvaPxvhPxy+PxvyPyy+PyvyPya+PavyPyh+PhvyPyvxPyvyPyvaPyvhPxa+PxvaPya+PyvaPaa+PavaPah+PhvaPavxPavyPavaPavhPxh+PxvhPyh+PyvhPah+PavhPhh+PhvhPhvxPhvyPhvaPhvhPxvxPyvxPavxPhvxPvxvxPvxvyPvxvaPvxvhPxvyPyvyPavyPhvyPvxvyPvyvyPvyvaPvyvhPxvaPyvaPavaPhvaPvxvaPvyvaPvavaPvavhPxvhPyvhPavhPhvhPvxvhPvyvhPvavhPvhvh
1000000001000000001000000001000010001000010001000010001000010001
结果是:
(
F
P
k
−
1
∣
k
−
1
)
F
⊤
=
[
P
x
x
+
2
P
x
v
x
+
P
v
x
v
x
P
x
y
+
P
x
v
y
+
P
y
v
x
+
P
v
x
v
y
P
x
a
+
P
x
v
a
+
P
a
v
x
+
P
v
x
v
a
P
x
h
+
P
x
v
h
+
P
h
v
x
+
P
v
x
v
h
P
x
v
x
+
P
v
x
v
x
P
x
v
y
+
P
v
x
v
y
P
x
v
a
+
P
v
x
v
a
P
x
v
h
+
P
v
x
v
h
P
x
y
+
P
y
v
x
+
P
x
v
y
+
P
v
x
v
y
P
y
y
+
2
P
y
v
y
+
P
v
y
v
y
P
y
a
+
P
y
v
a
+
P
a
v
y
+
P
v
y
v
a
P
y
h
+
P
y
v
h
+
P
h
v
y
+
P
v
y
v
h
P
y
v
x
+
P
v
x
v
y
P
y
v
y
+
P
v
y
v
y
P
y
v
a
+
P
v
y
v
a
P
y
v
h
+
P
v
y
v
h
P
x
a
+
P
a
v
x
+
P
x
v
a
+
P
v
x
v
a
P
y
a
+
P
a
v
y
+
P
y
v
a
+
P
v
y
v
a
P
a
a
+
2
P
a
v
a
+
P
v
a
v
a
P
a
h
+
P
a
v
h
+
P
h
v
a
+
P
v
a
v
h
P
a
v
x
+
P
v
x
v
a
P
a
v
y
+
P
v
y
v
a
P
a
v
a
+
P
v
a
v
a
P
a
v
h
+
P
v
a
v
h
P
x
h
+
P
h
v
x
+
P
x
v
h
+
P
v
x
v
h
P
y
h
+
P
h
v
y
+
P
y
v
h
+
P
v
y
v
h
P
a
h
+
P
h
v
a
+
P
a
v
h
+
P
v
a
v
h
P
h
h
+
2
P
h
v
h
+
P
v
h
v
h
P
h
v
x
+
P
v
x
v
h
P
h
v
y
+
P
v
y
v
h
P
h
v
a
+
P
v
a
v
h
P
h
v
h
+
P
v
h
v
h
P
x
v
x
+
P
v
x
v
x
P
y
v
x
+
P
v
x
v
y
P
a
v
x
+
P
v
x
v
a
P
h
v
x
+
P
v
x
v
h
P
v
x
v
x
P
v
x
v
y
P
v
x
v
a
P
v
x
v
h
P
x
v
y
+
P
v
x
v
y
P
y
v
y
+
P
v
y
v
y
P
a
v
y
+
P
v
y
v
a
P
h
v
y
+
P
v
y
v
h
P
v
x
v
y
P
v
y
v
y
P
v
y
v
a
P
v
y
v
h
P
x
v
a
+
P
v
x
v
a
P
y
v
a
+
P
v
y
v
a
P
a
v
a
+
P
v
a
v
a
P
h
v
a
+
P
v
a
v
h
P
v
x
v
a
P
v
y
v
a
P
v
a
v
a
P
v
a
v
h
P
x
v
h
+
P
v
x
v
h
P
y
v
h
+
P
v
y
v
h
P
a
v
h
+
P
v
a
v
h
P
h
v
h
+
P
v
h
v
h
P
v
x
v
h
P
v
y
v
h
P
v
a
v
h
P
v
h
v
h
]
(\mathbf{F} \mathbf{P}_{k-1|k-1}) \mathbf{F}^\top = \begin{bmatrix} P_{xx} + 2P_{xvx} + P_{vxvx} & P_{xy} + P_{xvy} + P_{yvx} + P_{vxvy} & P_{xa} + P_{xva} + P_{avx} + P_{vxva} & P_{xh} + P_{xvh} + P_{hvx} + P_{vxvh} & P_{xvx} + P_{vxvx} & P_{xvy} + P_{vxvy} & P_{xva} + P_{vxva} & P_{xvh} + P_{vxvh} \\ P_{xy} + P_{yvx} + P_{xvy} + P_{vxvy} & P_{yy} + 2P_{yvy} + P_{vyvy} & P_{ya} + P_{yva} + P_{avy} + P_{vyva} & P_{yh} + P_{yvh} + P_{hvy} + P_{vyvh} & P_{yvx} + P_{vxvy} & P_{yvy} + P_{vyvy} & P_{yva} + P_{vyva} & P_{yvh} + P_{vyvh} \\ P_{xa} + P_{avx} + P_{xva} + P_{vxva} & P_{ya} + P_{avy} + P_{yva} + P_{vyva} & P_{aa} + 2P_{ava} + P_{vava} & P_{ah} + P_{avh} + P_{hva} + P_{vavh} & P_{avx} + P_{vxva} & P_{avy} + P_{vyva} & P_{ava} + P_{vava} & P_{avh} + P_{vavh} \\ P_{xh} + P_{hvx} + P_{xvh} + P_{vxvh} & P_{yh} + P_{hvy} + P_{yvh} + P_{vyvh} & P_{ah} + P_{hva} + P_{avh} + P_{vavh} & P_{hh} + 2P_{hvh} + P_{vhvh} & P_{hvx} + P_{vxvh} & P_{hvy} + P_{vyvh} & P_{hva} + P_{vavh} & P_{hvh} + P_{vhvh} \\ P_{xvx} + P_{vxvx} & P_{yvx} + P_{vxvy} & P_{avx} + P_{vxva} & P_{hvx} + P_{vxvh} & P_{vxvx} & P_{vxvy} & P_{vxva} & P_{vxvh} \\ P_{xvy} + P_{vxvy} & P_{yvy} + P_{vyvy} & P_{avy} + P_{vyva} & P_{hvy} + P_{vyvh} & P_{vxvy} & P_{vyvy} & P_{vyva} & P_{vyvh} \\ P_{xva} + P_{vxva} & P_{yva} + P_{vyva} & P_{ava} + P_{vava} & P_{hva} + P_{vavh} & P_{vxva} & P_{vyva} & P_{vava} & P_{vavh} \\ P_{xvh} + P_{vxvh} & P_{yvh} + P_{vyvh} & P_{avh} + P_{vavh} & P_{hvh} + P_{vhvh} & P_{vxvh} & P_{vyvh} & P_{vavh} & P_{vhvh} \end{bmatrix}
(FPk−1∣k−1)F⊤=
Pxx+2Pxvx+PvxvxPxy+Pyvx+Pxvy+PvxvyPxa+Pavx+Pxva+PvxvaPxh+Phvx+Pxvh+PvxvhPxvx+PvxvxPxvy+PvxvyPxva+PvxvaPxvh+PvxvhPxy+Pxvy+Pyvx+PvxvyPyy+2Pyvy+PvyvyPya+Pavy+Pyva+PvyvaPyh+Phvy+Pyvh+PvyvhPyvx+PvxvyPyvy+PvyvyPyva+PvyvaPyvh+PvyvhPxa+Pxva+Pavx+PvxvaPya+Pyva+Pavy+PvyvaPaa+2Pava+PvavaPah+Phva+Pavh+PvavhPavx+PvxvaPavy+PvyvaPava+PvavaPavh+PvavhPxh+Pxvh+Phvx+PvxvhPyh+Pyvh+Phvy+PvyvhPah+Pavh+Phva+PvavhPhh+2Phvh+PvhvhPhvx+PvxvhPhvy+PvyvhPhva+PvavhPhvh+PvhvhPxvx+PvxvxPyvx+PvxvyPavx+PvxvaPhvx+PvxvhPvxvxPvxvyPvxvaPvxvhPxvy+PvxvyPyvy+PvyvyPavy+PvyvaPhvy+PvyvhPvxvyPvyvyPvyvaPvyvhPxva+PvxvaPyva+PvyvaPava+PvavaPhva+PvavhPvxvaPvyvaPvavaPvavhPxvh+PvxvhPyvh+PvyvhPavh+PvavhPhvh+PvhvhPvxvhPvyvhPvavhPvhvh
最终的预测协方差矩阵
将上面的结果与过程噪声协方差矩阵
Q
\mathbf{Q}
Q 相加:
P
k
∣
k
−
1
=
(
F
P
k
−
1
∣
k
−
1
)
F
⊤
+
Q
\mathbf{P}_{k|k-1} = (\mathbf{F} \mathbf{P}_{k-1|k-1}) \mathbf{F}^\top + \mathbf{Q}
Pk∣k−1=(FPk−1∣k−1)F⊤+Q
=
[
P
x
x
+
2
P
x
v
x
+
P
v
x
v
x
P
x
y
+
P
x
v
y
+
P
y
v
x
+
P
v
x
v
y
P
x
a
+
P
x
v
a
+
P
a
v
x
+
P
v
x
v
a
P
x
h
+
P
x
v
h
+
P
h
v
x
+
P
v
x
v
h
P
x
v
x
+
P
v
x
v
x
P
x
v
y
+
P
v
x
v
y
P
x
v
a
+
P
v
x
v
a
P
x
v
h
+
P
v
x
v
h
P
x
y
+
P
y
v
x
+
P
x
v
y
+
P
v
x
v
y
P
y
y
+
2
P
y
v
y
+
P
v
y
v
y
P
y
a
+
P
y
v
a
+
P
a
v
y
+
P
v
y
v
a
P
y
h
+
P
y
v
h
+
P
h
v
y
+
P
v
y
v
h
P
y
v
x
+
P
v
x
v
y
P
y
v
y
+
P
v
y
v
y
P
y
v
a
+
P
v
y
v
a
P
y
v
h
+
P
v
y
v
h
P
x
a
+
P
a
v
x
+
P
x
v
a
+
P
v
x
v
a
P
y
a
+
P
a
v
y
+
P
y
v
a
+
P
v
y
v
a
P
a
a
+
2
P
a
v
a
+
P
v
a
v
a
P
a
h
+
P
a
v
h
+
P
h
v
a
+
P
v
a
v
h
P
a
v
x
+
P
v
x
v
a
P
a
v
y
+
P
v
y
v
a
P
a
v
a
+
P
v
a
v
a
P
a
v
h
+
P
v
a
v
h
P
x
h
+
P
h
v
x
+
P
x
v
h
+
P
v
x
v
h
P
y
h
+
P
h
v
y
+
P
y
v
h
+
P
v
y
v
h
P
a
h
+
P
h
v
a
+
P
a
v
h
+
P
v
a
v
h
P
h
h
+
2
P
h
v
h
+
P
v
h
v
h
P
h
v
x
+
P
v
x
v
h
P
h
v
y
+
P
v
y
v
h
P
h
v
a
+
P
v
a
v
h
P
h
v
h
+
P
v
h
v
h
P
x
v
x
+
P
v
x
v
x
P
y
v
x
+
P
v
x
v
y
P
a
v
x
+
P
v
x
v
a
P
h
v
x
+
P
v
x
v
h
P
v
x
v
x
P
v
x
v
y
P
v
x
v
a
P
v
x
v
h
P
x
v
y
+
P
v
x
v
y
P
y
v
y
+
P
v
y
v
y
P
a
v
y
+
P
v
y
v
a
P
h
v
y
+
P
v
y
v
h
P
v
x
v
y
P
v
y
v
y
P
v
y
v
a
P
v
y
v
h
P
x
v
a
+
P
v
x
v
a
P
y
v
a
+
P
v
y
v
a
P
a
v
a
+
P
v
a
v
a
P
h
v
a
+
P
v
a
v
h
P
v
x
v
a
P
v
y
v
a
P
v
a
v
a
P
v
a
v
h
P
x
v
h
+
P
v
x
v
h
P
y
v
h
+
P
v
y
v
h
P
a
v
h
+
P
v
a
v
h
P
h
v
h
+
P
v
h
v
h
P
v
x
v
h
P
v
y
v
h
P
v
a
v
h
P
v
h
v
h
]
+
[
σ
x
2
0
0
0
0
0
0
0
0
σ
y
2
0
0
0
0
0
0
0
0
σ
a
2
0
0
0
0
0
0
0
0
σ
h
2
0
0
0
0
0
0
0
0
σ
v
x
2
0
0
0
0
0
0
0
0
σ
v
y
2
0
0
0
0
0
0
0
0
σ
v
a
2
0
0
0
0
0
0
0
0
σ
v
h
2
]
= \begin{bmatrix} P_{xx} + 2P_{xvx} + P_{vxvx} & P_{xy} + P_{xvy} + P_{yvx} + P_{vxvy} & P_{xa} + P_{xva} + P_{avx} + P_{vxva} & P_{xh} + P_{xvh} + P_{hvx} + P_{vxvh} & P_{xvx} + P_{vxvx} & P_{xvy} + P_{vxvy} & P_{xva} + P_{vxva} & P_{xvh} + P_{vxvh} \\ P_{xy} + P_{yvx} + P_{xvy} + P_{vxvy} & P_{yy} + 2P_{yvy} + P_{vyvy} & P_{ya} + P_{yva} + P_{avy} + P_{vyva} & P_{yh} + P_{yvh} + P_{hvy} + P_{vyvh} & P_{yvx} + P_{vxvy} & P_{yvy} + P_{vyvy} & P_{yva} + P_{vyva} & P_{yvh} + P_{vyvh} \\ P_{xa} + P_{avx} + P_{xva} + P_{vxva} & P_{ya} + P_{avy} + P_{yva} + P_{vyva} & P_{aa} + 2P_{ava} + P_{vava} & P_{ah} + P_{avh} + P_{hva} + P_{vavh} & P_{avx} + P_{vxva} & P_{avy} + P_{vyva} & P_{ava} + P_{vava} & P_{avh} + P_{vavh} \\ P_{xh} + P_{hvx} + P_{xvh} + P_{vxvh} & P_{yh} + P_{hvy} + P_{yvh} + P_{vyvh} & P_{ah} + P_{hva} + P_{avh} + P_{vavh} & P_{hh} + 2P_{hvh} + P_{vhvh} & P_{hvx} + P_{vxvh} & P_{hvy} + P_{vyvh} & P_{hva} + P_{vavh} & P_{hvh} + P_{vhvh} \\ P_{xvx} + P_{vxvx} & P_{yvx} + P_{vxvy} & P_{avx} + P_{vxva} & P_{hvx} + P_{vxvh} & P_{vxvx} & P_{vxvy} & P_{vxva} & P_{vxvh} \\ P_{xvy} + P_{vxvy} & P_{yvy} + P_{vyvy} & P_{avy} + P_{vyva} & P_{hvy} + P_{vyvh} & P_{vxvy} & P_{vyvy} & P_{vyva} & P_{vyvh} \\ P_{xva} + P_{vxva} & P_{yva} + P_{vyva} & P_{ava} + P_{vava} & P_{hva} + P_{vavh} & P_{vxva} & P_{vyva} & P_{vava} & P_{vavh} \\ P_{xvh} + P_{vxvh} & P_{yvh} + P_{vyvh} & P_{avh} + P_{vavh} & P_{hvh} + P_{vhvh} & P_{vxvh} & P_{vyvh} & P_{vavh} & P_{vhvh} \end{bmatrix} + \begin{bmatrix} \sigma_{x}^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{y}^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{a}^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{h}^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{vx}^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_{vy}^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{va}^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{vh}^2 \end{bmatrix}
=
Pxx+2Pxvx+PvxvxPxy+Pyvx+Pxvy+PvxvyPxa+Pavx+Pxva+PvxvaPxh+Phvx+Pxvh+PvxvhPxvx+PvxvxPxvy+PvxvyPxva+PvxvaPxvh+PvxvhPxy+Pxvy+Pyvx+PvxvyPyy+2Pyvy+PvyvyPya+Pavy+Pyva+PvyvaPyh+Phvy+Pyvh+PvyvhPyvx+PvxvyPyvy+PvyvyPyva+PvyvaPyvh+PvyvhPxa+Pxva+Pavx+PvxvaPya+Pyva+Pavy+PvyvaPaa+2Pava+PvavaPah+Phva+Pavh+PvavhPavx+PvxvaPavy+PvyvaPava+PvavaPavh+PvavhPxh+Pxvh+Phvx+PvxvhPyh+Pyvh+Phvy+PvyvhPah+Pavh+Phva+PvavhPhh+2Phvh+PvhvhPhvx+PvxvhPhvy+PvyvhPhva+PvavhPhvh+PvhvhPxvx+PvxvxPyvx+PvxvyPavx+PvxvaPhvx+PvxvhPvxvxPvxvyPvxvaPvxvhPxvy+PvxvyPyvy+PvyvyPavy+PvyvaPhvy+PvyvhPvxvyPvyvyPvyvaPvyvhPxva+PvxvaPyva+PvyvaPava+PvavaPhva+PvavhPvxvaPvyvaPvavaPvavhPxvh+PvxvhPyvh+PvyvhPavh+PvavhPhvh+PvhvhPvxvhPvyvhPvavhPvhvh
+
σx200000000σy200000000σa200000000σh200000000σvx200000000σvy200000000σva200000000σvh2
最终得到:
P
k
∣
k
−
1
=
[
P
x
x
+
2
P
x
v
x
+
P
v
x
v
x
+
σ
x
2
P
x
y
+
P
x
v
y
+
P
y
v
x
+
P
v
x
v
y
P
x
a
+
P
x
v
a
+
P
a
v
x
+
P
v
x
v
a
P
x
h
+
P
x
v
h
+
P
h
v
x
+
P
v
x
v
h
P
x
v
x
+
P
v
x
v
x
P
x
v
y
+
P
v
x
v
y
P
x
v
a
+
P
v
x
v
a
P
x
v
h
+
P
v
x
v
h
P
x
y
+
P
y
v
x
+
P
x
v
y
+
P
v
x
v
y
P
y
y
+
2
P
y
v
y
+
P
v
y
v
y
+
σ
y
2
P
y
a
+
P
y
v
a
+
P
a
v
y
+
P
v
y
v
a
P
y
h
+
P
y
v
h
+
P
h
v
y
+
P
v
y
v
h
P
y
v
x
+
P
v
x
v
y
P
y
v
y
+
P
v
y
v
y
P
y
v
a
+
P
v
y
v
a
P
y
v
h
+
P
v
y
v
h
P
x
a
+
P
a
v
x
+
P
x
v
a
+
P
v
x
v
a
P
y
a
+
P
a
v
y
+
P
y
v
a
+
P
v
y
v
a
P
a
a
+
2
P
a
v
a
+
P
v
a
v
a
+
σ
a
2
P
a
h
+
P
a
v
h
+
P
h
v
a
+
P
v
a
v
h
P
a
v
x
+
P
v
x
v
a
P
a
v
y
+
P
v
y
v
a
P
a
v
a
+
P
v
a
v
a
P
a
v
h
+
P
v
a
v
h
P
x
h
+
P
h
v
x
+
P
x
v
h
+
P
v
x
v
h
P
y
h
+
P
h
v
y
+
P
y
v
h
+
P
v
y
v
h
P
a
h
+
P
h
v
a
+
P
a
v
h
+
P
v
a
v
h
P
h
h
+
2
P
h
v
h
+
P
v
h
v
h
+
σ
h
2
P
h
v
x
+
P
v
x
v
h
P
h
v
y
+
P
v
y
v
h
P
h
v
a
+
P
v
a
v
h
P
h
v
h
+
P
v
h
v
h
P
x
v
x
+
P
v
x
v
x
P
y
v
x
+
P
v
x
v
y
P
a
v
x
+
P
v
x
v
a
P
h
v
x
+
P
v
x
v
h
P
v
x
v
x
+
σ
v
x
2
P
v
x
v
y
P
v
x
v
a
P
v
x
v
h
P
x
v
y
+
P
v
x
v
y
P
y
v
y
+
P
v
y
v
y
P
a
v
y
+
P
v
y
v
a
P
h
v
y
+
P
v
y
v
h
P
v
x
v
y
P
v
y
v
y
+
σ
v
y
2
P
v
y
v
a
P
v
y
v
h
P
x
v
a
+
P
v
x
v
a
P
y
v
a
+
P
v
y
v
a
P
a
v
a
+
P
v
a
v
a
P
h
v
a
+
P
v
a
v
h
P
v
x
v
a
P
v
y
v
a
P
v
a
v
a
+
σ
v
a
2
P
v
a
v
h
P
x
v
h
+
P
v
x
v
h
P
y
v
h
+
P
v
y
v
h
P
a
v
h
+
P
v
a
v
h
P
h
v
h
+
P
v
h
v
h
P
v
x
v
h
P
v
y
v
h
P
v
a
v
h
P
v
h
v
h
+
σ
v
h
2
]
\mathbf{P}_{k|k-1} = \begin{bmatrix} P_{xx} + 2P_{xvx} + P_{vxvx} + \sigma_{x}^2 & P_{xy} + P_{xvy} + P_{yvx} + P_{vxvy} & P_{xa} + P_{xva} + P_{avx} + P_{vxva} & P_{xh} + P_{xvh} + P_{hvx} + P_{vxvh} & P_{xvx} + P_{vxvx} & P_{xvy} + P_{vxvy} & P_{xva} + P_{vxva} & P_{xvh} + P_{vxvh} \\ P_{xy} + P_{yvx} + P_{xvy} + P_{vxvy} & P_{yy} + 2P_{yvy} + P_{vyvy} + \sigma_{y}^2 & P_{ya} + P_{yva} + P_{avy} + P_{vyva} & P_{yh} + P_{yvh} + P_{hvy} + P_{vyvh} & P_{yvx} + P_{vxvy} & P_{yvy} + P_{vyvy} & P_{yva} + P_{vyva} & P_{yvh} + P_{vyvh} \\ P_{xa} + P_{avx} + P_{xva} + P_{vxva} & P_{ya} + P_{avy} + P_{yva} + P_{vyva} & P_{aa} + 2P_{ava} + P_{vava} + \sigma_{a}^2 & P_{ah} + P_{avh} + P_{hva} + P_{vavh} & P_{avx} + P_{vxva} & P_{avy} + P_{vyva} & P_{ava} + P_{vava} & P_{avh} + P_{vavh} \\ P_{xh} + P_{hvx} + P_{xvh} + P_{vxvh} & P_{yh} + P_{hvy} + P_{yvh} + P_{vyvh} & P_{ah} + P_{hva} + P_{avh} + P_{vavh} & P_{hh} + 2P_{hvh} + P_{vhvh} + \sigma_{h}^2 & P_{hvx} + P_{vxvh} & P_{hvy} + P_{vyvh} & P_{hva} + P_{vavh} & P_{hvh} + P_{vhvh} \\ P_{xvx} + P_{vxvx} & P_{yvx} + P_{vxvy} & P_{avx} + P_{vxva} & P_{hvx} + P_{vxvh} & P_{vxvx} + \sigma_{vx}^2 & P_{vxvy} & P_{vxva} & P_{vxvh} \\ P_{xvy} + P_{vxvy} & P_{yvy} + P_{vyvy} & P_{avy} + P_{vyva} & P_{hvy} + P_{vyvh} & P_{vxvy} & P_{vyvy} + \sigma_{vy}^2 & P_{vyva} & P_{vyvh} \\ P_{xva} + P_{vxva} & P_{yva} + P_{vyva} & P_{ava} + P_{vava} & P_{hva} + P_{vavh} & P_{vxva} & P_{vyva} & P_{vava} + \sigma_{va}^2 & P_{vavh} \\ P_{xvh} + P_{vxvh} & P_{yvh} + P_{vyvh} & P_{avh} + P_{vavh} & P_{hvh} + P_{vhvh} & P_{vxvh} & P_{vyvh} & P_{vavh} & P_{vhvh} + \sigma_{vh}^2 \end{bmatrix}
Pk∣k−1=
Pxx+2Pxvx+Pvxvx+σx2Pxy+Pyvx+Pxvy+PvxvyPxa+Pavx+Pxva+PvxvaPxh+Phvx+Pxvh+PvxvhPxvx+PvxvxPxvy+PvxvyPxva+PvxvaPxvh+PvxvhPxy+Pxvy+Pyvx+PvxvyPyy+2Pyvy+Pvyvy+σy2Pya+Pavy+Pyva+PvyvaPyh+Phvy+Pyvh+PvyvhPyvx+PvxvyPyvy+PvyvyPyva+PvyvaPyvh+PvyvhPxa+Pxva+Pavx+PvxvaPya+Pyva+Pavy+PvyvaPaa+2Pava+Pvava+σa2Pah+Phva+Pavh+PvavhPavx+PvxvaPavy+PvyvaPava+PvavaPavh+PvavhPxh+Pxvh+Phvx+PvxvhPyh+Pyvh+Phvy+PvyvhPah+Pavh+Phva+PvavhPhh+2Phvh+Pvhvh+σh2Phvx+PvxvhPhvy+PvyvhPhva+PvavhPhvh+PvhvhPxvx+PvxvxPyvx+PvxvyPavx+PvxvaPhvx+PvxvhPvxvx+σvx2PvxvyPvxvaPvxvhPxvy+PvxvyPyvy+PvyvyPavy+PvyvaPhvy+PvyvhPvxvyPvyvy+σvy2PvyvaPvyvhPxva+PvxvaPyva+PvyvaPava+PvavaPhva+PvavhPvxvaPvyvaPvava+σva2PvavhPxvh+PvxvhPyvh+PvyvhPavh+PvavhPhvh+PvhvhPvxvhPvyvhPvavhPvhvh+σvh2