线性代数 - 线性方程组的原始解法(高斯消元法)
flyfish
线性方程组
方程组:{2x1+x2+x3=1(1)4x1+3x2+3x3=2(2)8x1+7x2+9x3=6(3)即 Ax=b, A=[211433879], b=[126] \text{方程组:}\begin{cases} 2x_1 + x_2 + x_3 = 1 \quad (1) \\ 4x_1 + 3x_2 + 3x_3 = 2 \quad (2) \\ 8x_1 + 7x_2 + 9x_3 = 6 \quad (3) \end{cases} \quad \text{即}\ \mathbf{Ax}=\mathbf{b},\ \mathbf{A}=\begin{bmatrix}2&1&1\\4&3&3\\8&7&9\end{bmatrix},\ \mathbf{b}=\begin{bmatrix}1\\2\\6\end{bmatrix} 方程组:⎩⎨⎧2x1+x2+x3=1(1)4x1+3x2+3x3=2(2)8x1+7x2+9x3=6(3)即 Ax=b, A=248137139, b=126
高斯消元法
逐步消去未知数的系数
增广矩阵
增广矩阵是把线性方程组的系数矩阵和常数项向量“拼在一起”形成的新矩阵,目的是让“系数”和“常数”同步进行行变换,避免分开操作出错。
{2x1+x2+x3=1(常数项1)4x1+3x2+3x3=2(常数项2)8x1+7x2+9x3=6(常数项6)
\begin{cases}
2x_1 + x_2 + x_3 = 1 \quad (\text{常数项1}) \\
4x_1 + 3x_2 + 3x_3 = 2 \quad (\text{常数项2}) \\
8x_1 + 7x_2 + 9x_3 = 6 \quad (\text{常数项6})
\end{cases}
⎩⎨⎧2x1+x2+x3=1(常数项1)4x1+3x2+3x3=2(常数项2)8x1+7x2+9x3=6(常数项6)
系数矩阵A\mathbf{A}A(只放未知数的系数):[211433879]\begin{bmatrix}2&1&1\\4&3&3\\8&7&9\end{bmatrix}248137139
常数项向量b\mathbf{b}b(只放等号右边的数):[126]\begin{bmatrix}1\\2\\6\end{bmatrix}126
把两者用竖线隔开,拼在一起就是增广矩阵:
[A∣b]=[211143328796]
[\mathbf{A}|\mathbf{b}] = \left[\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\ % 第1行:系数+常数项1
4 & 3 & 3 & 2 \\ % 第2行:系数+常数项2
8 & 7 & 9 & 6 % 第3行:系数+常数项6
\end{array}\right]
[A∣b]=248137139126
竖线左边是“未知数的系数”,右边是“等号后的常数”,这样后续做行变换时,系数和常数能同步变化,保证方程组的等价性(比如“给第1行乘2”,系数和常数会一起乘2,方程依然成立)
原始解法:高斯消元法(直接求解)
通过行变换将增广矩阵[A∣b][\mathbf{A}|\mathbf{b}][A∣b]转化为上三角矩阵,再回代求解。
一、:构造增广矩阵并消元(转化为上三角)
增广矩阵:
[A∣b]=[211143328796]
[\mathbf{A}|\mathbf{b}] = \left[\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\
4 & 3 & 3 & 2 \\
8 & 7 & 9 & 6
\end{array}\right]
[A∣b]=248137139126
消去第2、3行的x1x_1x1:
行2 = 行2 - 2×行1 → [211101108796]\left[\begin{array}{ccc|c}2&1&1&1\\0&1&1&0\\8&7&9&6\end{array}\right]208117119106
行3 = 行3 - 4×行1 → [211101100352]\left[\begin{array}{ccc|c}2&1&1&1\\0&1&1&0\\0&3&5&2\end{array}\right]200113115102
消去第3行的x2x_2x2:
行3 = 行3 - 3×行2 → [211101100022]\left[\begin{array}{ccc|c}2&1&1&1\\0&1&1&0\\0&0&2&2\end{array}\right]200110112102(上三角增广矩阵)
二、回代求解
由第3行:2x3=2 ⟹ x3=12x_3=2 \implies x_3=12x3=2⟹x3=1
代入第2行:x2+1=0 ⟹ x2=−1x_2 + 1=0 \implies x_2=-1x2+1=0⟹x2=−1
代入第1行:2x1−1+1=1 ⟹ x1=0.52x_1 -1 +1=1 \implies x_1=0.52x1−1+1=1⟹x1=0.5
1422

被折叠的 条评论
为什么被折叠?



