线性代数 - 线性方程组的原始解法(高斯消元法)

线性代数 - 线性方程组的原始解法(高斯消元法)

flyfish

线性方程组

方程组:{2x1+x2+x3=1(1)4x1+3x2+3x3=2(2)8x1+7x2+9x3=6(3)即 Ax=b, A=[211433879], b=[126] \text{方程组:}\begin{cases} 2x_1 + x_2 + x_3 = 1 \quad (1) \\ 4x_1 + 3x_2 + 3x_3 = 2 \quad (2) \\ 8x_1 + 7x_2 + 9x_3 = 6 \quad (3) \end{cases} \quad \text{即}\ \mathbf{Ax}=\mathbf{b},\ \mathbf{A}=\begin{bmatrix}2&1&1\\4&3&3\\8&7&9\end{bmatrix},\ \mathbf{b}=\begin{bmatrix}1\\2\\6\end{bmatrix} 方程组:2x1+x2+x3=1(1)4x1+3x2+3x3=2(2)8x1+7x2+9x3=6(3) Ax=b, A=248137139, b=126

高斯消元法

逐步消去未知数的系数

增广矩阵

增广矩阵是把线性方程组的系数矩阵常数项向量“拼在一起”形成的新矩阵,目的是让“系数”和“常数”同步进行行变换,避免分开操作出错。

{2x1+x2+x3=1(常数项1)4x1+3x2+3x3=2(常数项2)8x1+7x2+9x3=6(常数项6) \begin{cases} 2x_1 + x_2 + x_3 = 1 \quad (\text{常数项1}) \\ 4x_1 + 3x_2 + 3x_3 = 2 \quad (\text{常数项2}) \\ 8x_1 + 7x_2 + 9x_3 = 6 \quad (\text{常数项6}) \end{cases} 2x1+x2+x3=1(常数项1)4x1+3x2+3x3=2(常数项2)8x1+7x2+9x3=6(常数项6)
系数矩阵A\mathbf{A}A(只放未知数的系数):[211433879]\begin{bmatrix}2&1&1\\4&3&3\\8&7&9\end{bmatrix}248137139

常数项向量b\mathbf{b}b(只放等号右边的数):[126]\begin{bmatrix}1\\2\\6\end{bmatrix}126

把两者用竖线隔开,拼在一起就是增广矩阵
[A∣b]=[211143328796] [\mathbf{A}|\mathbf{b}] = \left[\begin{array}{ccc|c} 2 & 1 & 1 & 1 \\ % 第1行:系数+常数项1 4 & 3 & 3 & 2 \\ % 第2行:系数+常数项2 8 & 7 & 9 & 6 % 第3行:系数+常数项6 \end{array}\right] [Ab]=248137139126
竖线左边是“未知数的系数”,右边是“等号后的常数”,这样后续做行变换时,系数和常数能同步变化,保证方程组的等价性(比如“给第1行乘2”,系数和常数会一起乘2,方程依然成立)

原始解法:高斯消元法(直接求解)

通过行变换将增广矩阵[A∣b][\mathbf{A}|\mathbf{b}][Ab]转化为上三角矩阵,再回代求解。

一、:构造增广矩阵并消元(转化为上三角)

增广矩阵:
[A∣b]=[211143328796] [\mathbf{A}|\mathbf{b}] = \left[\begin{array}{ccc|c} 2 & 1 & 1 & 1 \\ 4 & 3 & 3 & 2 \\ 8 & 7 & 9 & 6 \end{array}\right] [Ab]=248137139126
消去第2、3行的x1x_1x1
行2 = 行2 - 2×行1 → [211101108796]\left[\begin{array}{ccc|c}2&1&1&1\\0&1&1&0\\8&7&9&6\end{array}\right]208117119106
行3 = 行3 - 4×行1 → [211101100352]\left[\begin{array}{ccc|c}2&1&1&1\\0&1&1&0\\0&3&5&2\end{array}\right]200113115102
消去第3行的x2x_2x2
行3 = 行3 - 3×行2 → [211101100022]\left[\begin{array}{ccc|c}2&1&1&1\\0&1&1&0\\0&0&2&2\end{array}\right]200110112102(上三角增广矩阵)

二、回代求解

由第3行:2x3=2  ⟹  x3=12x_3=2 \implies x_3=12x3=2x3=1
代入第2行:x2+1=0  ⟹  x2=−1x_2 + 1=0 \implies x_2=-1x2+1=0x2=1
代入第1行:2x1−1+1=1  ⟹  x1=0.52x_1 -1 +1=1 \implies x_1=0.52x11+1=1x1=0.5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值