矩阵快速幂

参考博客:https://www.cnblogs.com/cmmdc/p/6936196.html 

                  https://blog.csdn.net/NEET_Champloo/article/details/77932006

假如现在有一个n*n的方阵A。所谓方阵就是行数和列数相等的矩阵,先给出一个数M,让算矩阵A的M次幂,A^M.在此只要求计算并不需要去深究这个矩阵到底是什么含义。

阿三v

矩阵快速幂求斐波那契数列:

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<cstdlib>
#define ll long long
#define mem(a,x) memset((a),(x),sizeof ((a)))//x只能是0或-1或false或true
#define debug(x) cout<<"X: "<<(x)<<endl
#define de cout<<"************"<<endl
#define lowbit(x) ((x)&(-x))
#define lson rt<<1
#define rson rt<<1|1
#define gcd(a,b) __gcd(a,b)
#define lcm(a,b) a*b/(__gcd(a,b))
#define inf 0x3f3f3f3f//1e9+6e7
#define eps 1e-8
#define mod 998244353
#define N 1000010
const double pi=acos(-1.0);
using namespace std;
struct node{
    long long a[2][2];  //此处表示是2行2列的矩阵
} ori,res;

node mul(node x,node y,int n)//求两个n阶方阵的乘积
{
    node temp;
    mem(temp.a,0);
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            for(int k=0;k<n;k++)
            {
                temp.a[i][j]+=x.a[i][k]*y.a[k][j];
                temp.a[i][j]%=mod;
            }
        }
    }
    return temp;
}
/*
ori:
1 1
1 0

res: 单位阵
1 0
0 1
*/
void init()
{
    ori.a[0][0]=1,ori.a[0][1]=1;
    ori.a[1][0]=1,ori.a[1][1]=0;
    res.a[0][0]=1,res.a[0][1]=0;
    res.a[1][0]=0,res.a[1][1]=1;
}

long long Fi(long long k)   //求斐波那契数列Fi(k)
{
    while(k)
    {
        if(k&1)
            res=mul(res,ori,2);
        ori=mul(ori,ori,2);
        k>>=1;
    }
    return res.a[0][0];
}

int main()
{
    //矩阵快速幂求斐波那契数列
    //斐波那契数列 Fi(0)=1 Fi(1)=1 Fi(2)=2 Fi(3)=3 Fi(4)=5
    int n;
    while(scanf("%lld",&n)!=EOF)
    {
        init();
        printf("%lld\n",Fi(n));
    }
}

矩阵快速幂模板题:HDU 1575

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<cstdlib>
#define ll long long
#define mem(a,x) memset((a),(x),sizeof ((a)))//x只能是0或-1或false或true
#define debug(x) cout<<"X: "<<(x)<<endl
#define de cout<<"************"<<endl
#define lowbit(x) ((x)&(-x))
#define lson rt<<1
#define rson rt<<1|1
#define gcd(a,b) __gcd(a,b)
#define lcm(a,b) a*b/(__gcd(a,b))
#define inf 0x3f3f3f3f//1e9+6e7
#define eps 1e-8
#define mod 9973
#define N 1000010
const double pi=acos(-1.0);
using namespace std;
struct node{
    long long a[12][12];  //此处表示是12行12列的矩阵
}b,ret,ans;
int n,k;
node mul(node x,node y,int n)//求两个n阶方阵的乘积
{
    node temp;
    mem(temp.a,0);
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            for(int k=0;k<n;k++)
            {
                temp.a[i][j]+=x.a[i][k]*y.a[k][j];
                temp.a[i][j]%=mod;
            }
        }
    }
    return temp;
}
//res: 单位阵
//1 0
//0 1
//初始化单位矩阵
void init()
{
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            ret.a[i][j]=0;
    for(int i=0;i<n;i++)
        ret.a[i][i]=1;
}
node JZ_pow_mod(node c,int x)
{
    init();
    while(x)
    {
        if(x%2==1)
            ret=mul(ret,c,n);
        c=mul(c,c,n);
        x>>=1;
    }
    return ret;
}
int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        init();
        scanf("%d%d",&n,&k);
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                scanf("%d",&b.a[i][j]);
        ans=JZ_pow_mod(b,k);    //矩阵ans即为矩阵b的k次幂
        ll anss=0;
        for(int i=0;i<n;i++)
            anss=(anss+ans.a[i][i])%mod;
        cout<<anss<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值