参考博客:https://www.cnblogs.com/cmmdc/p/6936196.html
https://blog.csdn.net/NEET_Champloo/article/details/77932006
假如现在有一个n*n的方阵A。所谓方阵就是行数和列数相等的矩阵,先给出一个数M,让算矩阵A的M次幂,A^M.在此只要求计算并不需要去深究这个矩阵到底是什么含义。
矩阵快速幂求斐波那契数列:
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<cstdlib>
#define ll long long
#define mem(a,x) memset((a),(x),sizeof ((a)))//x只能是0或-1或false或true
#define debug(x) cout<<"X: "<<(x)<<endl
#define de cout<<"************"<<endl
#define lowbit(x) ((x)&(-x))
#define lson rt<<1
#define rson rt<<1|1
#define gcd(a,b) __gcd(a,b)
#define lcm(a,b) a*b/(__gcd(a,b))
#define inf 0x3f3f3f3f//1e9+6e7
#define eps 1e-8
#define mod 998244353
#define N 1000010
const double pi=acos(-1.0);
using namespace std;
struct node{
long long a[2][2]; //此处表示是2行2列的矩阵
} ori,res;
node mul(node x,node y,int n)//求两个n阶方阵的乘积
{
node temp;
mem(temp.a,0);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
for(int k=0;k<n;k++)
{
temp.a[i][j]+=x.a[i][k]*y.a[k][j];
temp.a[i][j]%=mod;
}
}
}
return temp;
}
/*
ori:
1 1
1 0
res: 单位阵
1 0
0 1
*/
void init()
{
ori.a[0][0]=1,ori.a[0][1]=1;
ori.a[1][0]=1,ori.a[1][1]=0;
res.a[0][0]=1,res.a[0][1]=0;
res.a[1][0]=0,res.a[1][1]=1;
}
long long Fi(long long k) //求斐波那契数列Fi(k)
{
while(k)
{
if(k&1)
res=mul(res,ori,2);
ori=mul(ori,ori,2);
k>>=1;
}
return res.a[0][0];
}
int main()
{
//矩阵快速幂求斐波那契数列
//斐波那契数列 Fi(0)=1 Fi(1)=1 Fi(2)=2 Fi(3)=3 Fi(4)=5
int n;
while(scanf("%lld",&n)!=EOF)
{
init();
printf("%lld\n",Fi(n));
}
}
矩阵快速幂模板题:HDU 1575
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<cstdlib>
#define ll long long
#define mem(a,x) memset((a),(x),sizeof ((a)))//x只能是0或-1或false或true
#define debug(x) cout<<"X: "<<(x)<<endl
#define de cout<<"************"<<endl
#define lowbit(x) ((x)&(-x))
#define lson rt<<1
#define rson rt<<1|1
#define gcd(a,b) __gcd(a,b)
#define lcm(a,b) a*b/(__gcd(a,b))
#define inf 0x3f3f3f3f//1e9+6e7
#define eps 1e-8
#define mod 9973
#define N 1000010
const double pi=acos(-1.0);
using namespace std;
struct node{
long long a[12][12]; //此处表示是12行12列的矩阵
}b,ret,ans;
int n,k;
node mul(node x,node y,int n)//求两个n阶方阵的乘积
{
node temp;
mem(temp.a,0);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
for(int k=0;k<n;k++)
{
temp.a[i][j]+=x.a[i][k]*y.a[k][j];
temp.a[i][j]%=mod;
}
}
}
return temp;
}
//res: 单位阵
//1 0
//0 1
//初始化单位矩阵
void init()
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
ret.a[i][j]=0;
for(int i=0;i<n;i++)
ret.a[i][i]=1;
}
node JZ_pow_mod(node c,int x)
{
init();
while(x)
{
if(x%2==1)
ret=mul(ret,c,n);
c=mul(c,c,n);
x>>=1;
}
return ret;
}
int main()
{
int T;
cin>>T;
while(T--)
{
init();
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",&b.a[i][j]);
ans=JZ_pow_mod(b,k); //矩阵ans即为矩阵b的k次幂
ll anss=0;
for(int i=0;i<n;i++)
anss=(anss+ans.a[i][i])%mod;
cout<<anss<<endl;
}
return 0;
}