PDE约束优化控制问题-NN求解含参问题

该博客介绍了如何利用神经网络(NN)解决偏微分方程(PDE)约束的优化控制问题,特别是含参问题。在算例1中,通过将ub作为第三个维度处理,可以适应性地解决一系列问题。算例2探讨了多个参数的情况,一次性求解不同参数组合下的问题,例如(μ1, μ2) = (0.25, 2.5),并提供了使用dolfin求解的对比示例。" 116885222,7800548,逐步回归分析:方法与应用,"['数据挖掘', '机器学习', '统计分析', 'Python', '回归分析']
摘要由CSDN通过智能技术生成

算例1(gongwei修改ub含参问题)

在这里插入图片描述
把ub当成第三个维度传入NN,相应修改 y d , f , u a c c y_d,f,u_{acc}

### 使用物理信息神经网络(PINN求解偏微分方程 #### 物理信息神经网络概述 物理信息神经网络(Physics-Informed Neural Networks, PINNs)是一种结合了传统神经网络架构与物理学定律的方法,用于高效求解偏微分方程。这种方法通过引入物理约束条件作为损失函数的一部分,在不依赖大量数据的情况下能够获得较为精确的结果。 #### 构建PINN模型 构建一个有效的PINN模型涉及以下几个方面: - **定义输入变量**:对于大多数时空问题而言,时间\(t\)和空间坐标\(\mathbf{x}\)构成主要的输入数。 - **设计网络结构**:采用多层感知机或多维卷积等形式建立深层前馈神经网络。该网络接收上述提到的时间及位置向量并输出待求未知场量及其导数形式[^1]。 ```python import torch from torch import nn class Net(nn.Module): def __init__(self, layers): super(Net, self).__init__() # 初始化全连接层列表 linears = [] for i in range(len(layers)-2): linears.append(nn.Linear(layers[i], layers[i+1])) linears.append(nn.Tanh()) # 添加最后一层线性变换 linears.append(nn.Linear(layers[-2], layers[-1])) self.linears = nn.Sequential(*linears) def forward(self, t, x): input_tensor = torch.cat([t,x], dim=1) output = self.linears(input_tensor) return output ``` #### 设定残差项与边界条件 为了使训练过程更加贴近实际物理现象,需将原始PDE转换成相应的弱形式或强形式下的残差表达式,并将其加入到总的目标函数之中;同时也要考虑初始时刻以及边界的特定情况加以适当处理[^3]。 ```python def compute_residual(net, t, x): u = net(t.requires_grad_(), x.requires_grad_()) du_dt = torch.autograd.grad(u.sum(), t, create_graph=True)[0] du_dx = torch.autograd.grad(u.sum(), x, create_graph=True)[0] d2u_dxx = torch.autograd.grad(du_dx.sum(), x, retain_graph=True, create_graph=True)[0] residual = du_dt + u * du_dx - nu * d2u_dxx return residual.pow(2).mean() ``` #### 训练流程 利用随机梯度下降算法或其他优化器调整权重直至收敛至全局最优解附近为止。期间可借助Adam等自适应学习率策略加速这一进程。值得注意的是,合理的超设置有助于缓解过拟合风险并提高泛化能力[^2]。 ```python optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate) for epoch in range(num_epochs): optimizer.zero_grad() loss_pde = compute_residual(net, t_train, x_train) loss_bc = boundary_condition_loss(net, bc_data) total_loss = loss_pde + lambda_param*loss_bc total_loss.backward() optimizer.step() if epoch % print_every == 0: print(f'Epoch {epoch}, Loss: {total_loss.item()}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谨慎付费(看不懂试读博客不要订阅)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值