PDE约束优化控制问题-NN求解含参问题

该博客介绍了如何利用神经网络(NN)解决偏微分方程(PDE)约束的优化控制问题,特别是含参问题。在算例1中,通过将ub作为第三个维度处理,可以适应性地解决一系列问题。算例2探讨了多个参数的情况,一次性求解不同参数组合下的问题,例如(μ1, μ2) = (0.25, 2.5),并提供了使用dolfin求解的对比示例。" 116885222,7800548,逐步回归分析:方法与应用,"['数据挖掘', '机器学习', '统计分析', 'Python', '回归分析']
摘要由CSDN通过智能技术生成

算例1(gongwei修改ub含参问题)

在这里插入图片描述
把ub当成第三个维度传入NN,相应修改 y d , f , u a c c y_d,f,u_{acc}

PDE约束优化控制问题是指在优化问题中存在偏微分方程(Partial Differential Equation, PDE约束控制问题。常见的PDE约束包括椭圆型、抛物型和双曲型方程等。 而间断问题是指在优化控制问题中,相关参数或变量会突然发生改变,即存在间断点的情况。间断问题的出现常常是由于系统的特性突变、外部扰动或控制策略的调整等原因引起的。 解决PDE约束优化控制问题的间断问题,可以采用以下方法: 1. 近似法:通过使用适当的数值方法,将偏微分方程转化为一系列离散点上的代数方程,然后利用求解代数方程的方法求解。在这种方法下,需要考虑间断点对数值方法的影响,并采取相应的调整措施。 2. 多模型方法:将间断问题转化为多个连续的子问题,每个子问题对应一段不连续的参数或变量。然后在每段连续区间上求解连续的PDE约束优化控制问题,最后将所有段的解整合起来。这种方法的关键是确定每个段的边界条件,以及在段之间实现平滑过渡。 3. 非光滑控制方法:通过使用非光滑控制理论,考虑到间断点的存在,建立非光滑控制模型,并在该模型下进行求解。这种方法的优势是能够处理复杂的间断问题,但需要深入研究非光滑控制理论及其应用。 总之,解决PDE约束优化控制问题求解的间断问题是一个具有挑战性的任务,需要合适的数值方法、数学模型和算法来克服。不同的方法适用于不同的问题,具体的选择应根据具体问题的特点和要求来决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galerkin码农选手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值