4.1 什么是不确定性推理?有哪几类不确定性推理方法?不确定性推理中需要解决的基本问题有哪些?
不确定性推理是从不确定性的初始证据出发,通过运用不确定性的知识,推出具有一定程度的不确定性但却合理或近乎合理的结论的思维过程。不确定性推理方法主要有概率方法、可信度方法、证据理论和模糊推理方法等。不确定性推理中需要解决的基本问题包括不确定性的表示与量度、不确定性匹配算法与阈值的选择、组合证据不确定性的算法、不确定性的传递算法、结论不确定性的合成。
4.2 什么是可信度?由可信度因子CF(H,E)的定义说明它的含义。
可信度是根据经验对一个事物或现象为真的相信程度。可信度因子CF(H,E)用来表示一条知识的可信度或规则强度,它表示由于证据E的出现使结论H为真的可信度是增加了还是减少了。如果是增加了则CF(H,E)>0,并且CF(H,E)的值越大说明结论为真的可信度越大;相反如果证据E的出现使结论H为假的可信度增加了则使CF(H,E)<0,并且CF(H,E)的值越小说明结论为假的可信度越大;若证据的出现与否和H无关则使CF(H,E)=0。
4.3 简述求取问题结论可信度的步骤。
求取问题结论可信度的步骤通常包括:确定证据的可信度、确定规则的可信度、应用不确定性推理方法(如D-S证据理论、可信度方法等)来合成证据和规则的可信度,最终得出结论的可信度。
4.4 说明概率分配函数、信任函数、似然函数的含义。
概率分配函数是D-S证据理论中用于对识别框架中的每个子集进行概率分配的函数。信任函数(Belief Function)是用于表示对某个假设的信任程度的函数,它是基于概率分配函数的。似然函数(Plausibility Function)则表示对假设为真的似然程度,它也是基于概率分配函数的。
4.5概率分配函数与概率相同吗?为什么?
概率分配函数与概率不完全相同。概率分配函数是D-S证据理论中的一个概念,它分配给识别框架Θ的各个子集的信任程度,而传统概率论中的概率是分配给Θ中单个元素的。概率分配函数可以看作是概率的一种推广,它能够表示不确定性和模糊性
4.6 如何用D-S证据理论描述假设、规则和证据的不确定性,并实现不确定性的推理和组合?
D-S证据理论通过基本概率分配(BPA)来描述假设、规则和证据的不确定性。它使用信任函数和似然函数来实现不确定性的推理和组合。D-S理论的核心是Dempster的规则,它提供了一种合并多个证据的方法,以便在存在不确定性和冲突的情况下进行推理
4.7 什么是模糊性?它与随机性有什么区别?试举出几个日常生活中的模糊概念。
模糊性通常是指对概念的定义以及语言意义的理解上的不确定性,如“老人”、“温度高”、“数量大”等。它与随机性的主要区别在于,模糊性是主观理解上的不确定性,而随机性是客观上的自然的不确定性或事件发生的偶然性。例如,“明天有雨”的不确定性是由今天的预测产生的,时间过去了,到明天就变成确定的了。但“老人”,“气温高”等的不确定性,即使时间过去了,即使做实验,它仍然不确定。
4.8 模糊推理的一般过程是什么?
模糊推理的一般过程包括:模糊化,即把精确的输入数据转换为模糊值;模糊推理,即根据模糊逻辑进行推理;去模糊化,即将模糊推理的结果转换为精确的输出。