人工智能教程 - 数学基础课程1.1 - 数学分析(一)34-35 泰勒级数

泰勒级数在这里插入图片描述

在这里插入图片描述

C N + 1 = N C N + 1 ( C N + 1 ) N + 1 − ( N + 1 ) C N + 1 N + 1 C_{N+1}=\frac{NC_N+1(C_N+1)}{N+1}-\frac{(N+1)C_N+1}{N+1} CN+1=N+1NCN+1(CN+1)N+1(N+1)CN+1

Center of mass of N+1 blocks

X-coordinate

C N + 1 = C N + 1 N + 1 C_{N+1}=C_N+\frac{1}{N+1} CN+1=CN+N+11

C 1 = 1 C_1=1 C1=1
C 2 = 1 + 1 2 C_2=1+\frac{1}{2} C2=1+21
C 3 = C 2 + 1 3 = 1 + 1 2 + 1 3 C_3=C_2+\frac{1}{3}=1+\frac{1}{2}+\frac{1}{3} C3=C2+31=1+21+31
C N = 1 + 1 2 + 1 3 + 1 4 + . . . + 1 N C_N=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{N} CN=1+21+31+41+...+N1

C N = S N C_N=S_N CN=SN
l n N < S N < ( l n N ) + 1 lnN<S_N<(lnN)+1 lnN<SN<(lnN)+1
a s    N → ∞ , l n N → ∞    a n d    S N → ∞ as \ \ N\rightarrow \infty,lnN\rightarrow \infty \ \ and \ \ S_N \rightarrow \infty as  N,lnN  and  SN

Power Series
1 + x + x 2 + x 3 + . . . = 1 1 − x 1+x+x^2+x^3+...=\frac{1}{1-x} 1+x+x2+x3+...=1x1

|x|<1 (geometric series)

(converge)

( 1 + x + x 2 ) = S (1+x+x^2) =S (1+x+x2)=S
x + x 2 + x 3 + . . . = S x x+x^2+x^3+... =Sx x+x2+x3+...=Sx
1 = S − S x = S ( 1 − x ) 1=S-Sx =S(1-x) 1=SSx=S(1x)

Resoning incomplete because it requires S exists

General Power Series

a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . = ∑ n = 0 ∞ a n x n a_0+a_1x+a_2x^2+a_3x^3+... =\sum_{n=0}^{\infty}a_nx^n a0+a1x+a2x2+a3x3+...=n=0anxn

|x|<R(radius of convergence)
(-R<x<R)

where series convergence ∑ a n x n \sum a_nx^n anxn diverge

|x|>R very delicate borderline(很微妙的边界)—not used by us

∣ a n x n ∣ → 0 |a_nx^n|\rightarrow 0 anxn0 exponentially fast |x|<R

∣ a n x n ∣ ≠ → 0 |a_nx^n|\neq \rightarrow 0 anxn=0 for |x|>R

Rules for conergant power series are just like polynomials
f(x)+g(x),f(x).g(x),f(g(x)),f(x)/g(x)

d d x f ( x ) , ∫ f ( x ) d x \frac{d}{dx}f(x),\int f(x)dx dxdf(x),f(x)dx

d d x ( a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . ) = a 1 + 2 a 2 x + 3 a 3 x 2 + . . . \frac{d}{dx}(a_0+a_1x+a_2x^2+a_3x^3+...)=a_1+2a_2x+3a_3x^2+... dxd(a0+a1x+a2x2+a3x3+...)=a1+2a2x+3a3x2+...
∫ ( a 0 + a 1 x + a 2 x 2 + . . . ) d x = c + a 0 + a 1 x 2 / 2 + a 2 x 3 / 3 + . . . \int(a_0+a_1x+a_2x^2+...)dx=c+a_0+a_1x^2/2+a_2x^3/3+... (a0+a1x+a2x2+...)dx=c+a0+a1x2/2+a2x3/3+...

Taylor’s formula:

f ( x ) = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n f(x)=n=0n!f(n)(0)xn


级数

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + . . . \LARGE f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+... f(x)=f(0)+f(0)x+2!f(0)x2+...

Ex: (Euler欧拉)

x=0
f ( x ) = e x f(x)=e^x f(x)=ex1
f ′ ( x ) = e x f'(x)=e^x f(x)=ex1
f ′ ′ ( x ) = e x f''(x)=e^x f(x)=ex1

e x = 1 + x + x 2 2 ! + x 3 3 ! + . . . \LARGE e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+... ex=1+x+2!x2+3!x3+...

Ex2:

1 1 + x = 1 − x + x 2 − x 3 + . . . \LARGE \frac{1}{1+x}=1-x+x^2-x^3+... 1+x1=1x+x2x3+...

Ex3:

s i n ( x ) = x − x 3 3 ! + x 5 5 ! − . . . \LARGE sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-... sin(x)=x3!x3+5!x5...

New Power Series From Old
1). Multiply

x s i n ( x ) = x 2 − x 4 3 ! + x 6 5 ! − . . . \LARGE xsin(x)=x^2-\frac{x^4}{3!}+\frac{x^6}{5!}-... xsin(x)=x23!x4+5!x6...

2). Differentiate求导

c o s ( x ) = s i n ′ ( x ) = 1 − 3 x 2 3 ! + 5 x 4 5 ! − . . . = 1 − x 2 2 + x 4 4 ! − . . . \LARGE cos(x)=sin'(x)=1-\frac{3x^2}{3!}+\frac{5x^4}{5!}-...\LARGE =1-\frac{x^2}{2}+\frac{x^4}{4!}-... cos(x)=sin(x)=13!3x2+5!5x4...=12x2+4!x4...

3). Integrate:

l n ( 1 + x ) = ∫ 0 x d t 1 + t \LARGE ln(1+x)=\int_{0}^{x}\frac{dt}{1+t} ln(1+x)=0x1+tdt

( x > − 1 ) = ∫ 0 x ( 1 − t + t 2 + t 3 + . . . ) d t \LARGE (x>-1)=\int_0^x(1-t+t^2+t^3+...)dt (x>1)=0x(1t+t2+t3+...)dt

= [ t − t 2 2 + t 3 3 − t 4 4 + . . . ] ∣ 0 x \LARGE =[t-\frac{t^2}{2}+\frac{t^3}{3}-\frac{t^4}{4}+...]|_0^x =[t2t2+3t34t4+...]0x

l n ( 1 + x ) = [ x − x 2 2 + x 3 3 − x 4 4 + . . . ] ( R = 1 ) \LARGE ln(1+x)=[x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...](R=1) ln(1+x)=[x2x2+3x34x4+...](R=1)

4).Substitue:

e − t 2 \LARGE e^{-t^2} et2 ( x = − t 2 ; i n    e x ) \LARGE (x=-t^2;in \ \ e^x) (x=t2;in  ex)

= 1 − t 2 + t 4 2 ! + t 6 3 ! − . . . \LARGE =1-t^2+\frac{t^4}{2!}+\frac{t^6}{3!}-... =1t2+2!t4+3!t6...

E r f ( x ) = 2 π ∫ 0 x e − t 2 d x = 2 π ( x − x 3 3 + x 5 5.2 ! − 7 3 7.3 ! + . . . ) \LARGE Er f(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}dx\LARGE =\frac{2}{\sqrt{\pi}}(x-\frac{x^3}{3}+\frac{x^5}{5.2!}-\frac{7^3}{7.3!}+...) Erf(x)=π 20xet2dx=π 2(x3x3+5.2!x57.3!73+...)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值