CIFAR-10图像分类(基于PyTorch)

数据集介绍

CIFAR-10是一个常用的彩色图片数据集,它有10个类别: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。每张图片都是 3 × 32 × 32 3\times32\times32 3×32×32,也即3-通道彩色图片,分辨率为 32 × 32 32\times32 32×32。此外,还有一个CIFAR-100的数据集,由于CIFAR-10和CIFAR-100除了分类类别数不一样外,其他差别不大,此处仅拿CIFAR-10这个相对小点的数据集来进行介绍,介绍用pytorch来进行图像分类的一般思路和方法。

该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据里,取自10类中的每一类,每一类随机取1000张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定数量相同,总的来看训练批,每一类都有5000张图。

下图是下载CIFAR-10数据集并解压后得到的文件
在这里插入图片描述
下图是CIFAR-10数据集的各个文件的介绍
在这里插入图片描述
关于数据集的介绍部分,网上有很多的资料,在此不再多说,直接上重点~~

图像分类步骤

下面我们来尝试实现对CIFAR-10数据集的分类,步骤如下:

  1. 使用torchvision加载并预处理CIFAR-10数据集
  2. 定义网络
  3. 定义损失函数和优化器
  4. 训练网络并更新网络参数
  5. 测试网络

数据加载及预处理

注:基本环境要求:python 3.6, pytorch 0.4.1(更新的版本应该也可以),完整代码已给出。

import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化

# 第一次运行程序torchvision会自动下载CIFAR-10数据集,
# 大约160M,需花费一定的时间,
# 如果已经下载有CIFAR-10,可通过root参数指定

# 定义对数据的预处理
transform = transforms.Compose([
        transforms.ToTensor(), # 转为Tensor
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化 先将输入归一化到(0,1),再使用公式”(x-mean)/std”,将每个元素分布到(-1,1) 
                             ])                    

# 训练集(因为torchvision中已经封装好了一些常用的数据集,包括CIFAR10、MNIST等,所以此处可以这么写 tv.datasets.CIFAR10())
trainset = tv.datasets.CIFAR10(
                    root='DataSet/',   # 将下载的数据集压缩包解压到当前目录的DataSet目录下
                    train=True, 
                    download=False,    # 如果之前没手动下载数据集,这里要改为True
                    transform=transform)

trainloader = t.utils.data.DataLoader(
                    trainset, 
                    batch_size=4,
                    shuffle=True, 
                    num_workers=2)

# 测试集
testset = tv.datasets.CIFAR10(
                    'DataSet/',
                    train=False, 
                    download=False,   # 如果之前没手动下载数据集,这里要改为True 
                    transform=transform)

testloader = t.utils.data.DataLoader(
                    testset,
                    batch_size=4, 
                    shuffle=False,
                    num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

其中,Dataset对象是一个数据集,可以按下标访问,返回形如(data, label)的元组数据,如下:

(data, label) = trainset[66]  
data.size()   # 验证某一张图片的维度 —— 3*32*32
print(classes[label]) # label是一个0-9的数字
# (data + 1) / 2是为了还原被归一化的数据 (这部分计算是可以推算出来的)
show((data + 1) / 2).resize((100, 100))

上面测试代码的输出为:
在这里插入图片描述
定义好Dataset后,我们还要为每个Dataset定义一个Dataloader,Dataloader是一个可迭代的对象,它将dataset返回的每一条数据拼接成一个batch,并提供多线程加速优化数据打乱等操作。当程序对dataset的所有数据遍历完一遍之后,相应的对Dataloader也完成了一次迭代,如下:

dataiter = iter(trainloader)   # trainloader is a DataLoader Object 
images, labels = dataiter.next() # 返回4张图片及标签   images,labels都是Tensor    images.size()= torch.Size([4, 3, 32, 32])     lables = tensor([5, 6, 3, 8])
print(' '.join('%11s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images+1)/2)).resize((400,100))

上面测试代码的输出为:
在这里插入图片描述
上面的两段测试代码(关于DatasetDataloader)只是为了让我们对pytorch的数据加载及预处理部分先有一个基本的熟悉。

定义网络

这是一个比较简单的图像分类任务,直接用比较简单的网络即可得到较好的结果,此处用LeNet网络来进行图像分类,LeNet网络的定义如下:
注:对这部分不太懂的可先参考这篇博客

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5) 
        self.conv2 = nn.Conv2d(6, 16, 5)  
        self.fc1   = nn.Linear(16*5*5, 120)  
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)  # 最后是一个十分类,所以最后的一个全连接层的神经元个数为10

    def forward(self, x): 
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) 
        x = F.max_pool2d(F.relu(self.conv2(x)), 2) 
        x = x.view(x.size()[0], -1)  # 展平  x.size()[0]是batch size
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)        
        return x


net = Net()
print(net)

"print(net)"的输出为:(这就是整个网路的结构)
在这里插入图片描述

定义损失函数和优化器

from torch import optim
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

训练网络

所有网络的训练流程都是类似的,不断地执行如下流程:

  • 输入数据
  • 前向传播+反向传播
  • 更新参数
在CPU训练
t.set_num_threads(4)
for epoch in range(2):  
    
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):   # i 第几个batch     data:一个batch中的数据
        
        # 输入数据
        inputs, labels = data   # images:batch大小为4     labels:batch大小为4
        
        # 梯度清零
        optimizer.zero_grad()
        
        # forward + backward 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()   
        
        # 更新参数 
        optimizer.step()
        
        # 打印log信息
        # loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]
        running_loss += loss.item()
        if i % 2000 == 1999: # 每2000个batch打印一下训练状态
            print('[%d, %5d] loss: %.3f' \
                  % (epoch+1, i+1, running_loss / 2000))
            running_loss = 0.0
print('Finished Training')

输出如下:
在这里插入图片描述
此处仅训练了2个epoch(遍历完一遍数据集称为一个epoch),来看看网络有没有效果。将测试图片输入到网络中,计算它的label,然后与实际的label进行比较。

dataiter = iter(testloader)
images, labels = dataiter.next() # 一个batch返回4张图片
print('实际的label: ', ' '.join(\
            '%08s'%classes[labels[j]] for j in range(4)))
# show(tv.utils.make_grid(images / 2 - 0.5)).resize((400,100))
show(tv.utils.make_grid((images+1) / 2 )).resize((400,100))

输出如下:
在这里插入图片描述
接着计算网络预测的label:

images.shape
# 计算图片在每个类别上的分数
outputs = net(images)   # images 4张图片的数据
# 得分最高的那个类
_, predicted = t.max(outputs.data, 1)   # 1是维度参数,返回值为两个,一个为最大值,另一个为最大值的索引

print('预测结果: ', ' '.join('%5s'\
            % classes[predicted[j]] for j in range(4)))

输出如下:
在这里插入图片描述
已经可以看出效果,准确率50%,但这只是一部分的图片,再来看看在整个测试集上的效果。

correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数

# 由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存
with t.no_grad():
    for data in testloader:      # data是个tuple
        images, labels = data    # image和label 都是tensor        
        outputs = net(images)
        _, predicted = t.max(outputs, 1)
        total += labels.size(0)    # labels tensor([3, 8, 8, 0])            labels.size: torch.Size([4])
        correct += (predicted == labels).sum()

print('10000张测试集中的准确率为: %d %%' % (100 * correct / total))

输出如下:
在这里插入图片描述
训练的准确率远比随机猜测(准确率10%)好,证明网络确实学到了东西。

在GPU训练

就像把Tensor从CPU转到GPU一样,模型也可以类似地从CPU转到GPU。

dataiter = iter(testloader)
images, labels = dataiter.next() # 一个batch返回4张图片

net_gpu = Net()
net_gpu.cuda()
device = t.device("cuda:0" if t.cuda.is_available() else "cpu")
device
images = images.to(device)
labels = labels.to(device)
output = net_gpu(images)
output = output.to(device)
loss= criterion(output,labels)

loss

在这里插入图片描述

for epoch in range(2):  
    
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):   # i 第几个batch     data:一个batch中的数据
        
        # 输入数据
        inputs, labels = data   # images:大小为4   labels:大小为4
        
        inputs = inputs.to(device)
        labels = labels.to(device)
        
        # 梯度清零
        optimizer.zero_grad()
        
        # forward + backward 
        outputs = net_gpu(inputs)
        
        outputs = outputs.to(device)
        
        loss = criterion(outputs, labels)
        loss.backward()   
        
        # 更新参数 
        optimizer.step()
        
        # 打印log信息
        # loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]
        running_loss += loss.item()
        if i % 2000 == 1999: # 每2000个batch打印一下训练状态
            print('[%d, %5d] loss: %.3f' \
                  % (epoch+1, i+1, running_loss / 2000))
            running_loss = 0.0
print('Finished Training')

在这里插入图片描述
如果发现在GPU上并没有比CPU提速很多,实际上是因为网络比较小,GPU没有完全发挥自己的真正实力。

对PyTorch的基础介绍至此结束。总结一下,本节主要包含以下内容。

  1. Tensor: 类似Numpy数组的数据结构,与Numpy接口类似,可方便地互相转换。
  2. autograd/: 为tensor提供自动求导功能。
  3. nn: 专门为神经网络设计的接口,提供了很多有用的功能(神经网络层,损失函数,优化器等)。
  4. 神经网络训练: 以CIFAR-10分类为例演示了神经网络的训练流程,包括数据加载、网络搭建、训练及测试。

通过本文的学习,相信读者可以体会出PyTorch具有接口简单、使用灵活等特点。

References

  • 23
    点赞
  • 145
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
下面是一个基于PyTorch实现的Transformers对cifar-10图像分类的代码,使用了BERT作为Transformers的模型。 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from transformers import BertModel # 超参数设置 input_size = 32 hidden_size = 768 num_classes = 10 batch_size = 100 num_epochs = 10 learning_rate = 0.001 # CIFAR-10数据集下载和预处理 transform = transforms.Compose( [transforms.Resize((input_size, input_size)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2) # BERT模型定义 class BERT(nn.Module): def __init__(self, hidden_size, num_classes): super(BERT, self).__init__() self.bert = BertModel.from_pretrained('bert-base-uncased') self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): # 前向传播 BERT out = self.bert(x)[0][:, 0, :] out = self.fc(out) return out device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = BERT(hidden_size, num_classes).to(device) # 损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 模型训练 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将图像转换BERT需要的形状 images = images.reshape(-1, input_size * input_size * 3).to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 模型测试 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: # 将图像转换BERT需要的形状 images = images.reshape(-1, input_size * input_size * 3).to(device) labels = labels.to(device) # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) ``` 需要注意的是,这个代码中使用了一个将图像转换BERT需要的形状的过程,即将每个图像的像素展平一维向量。在这个例子中,我们使用了预训练的BERT模型来提取图像的特征,并将特征向量输入到一个全连接层中进行分类。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值