引言
自2017年Transformer架构问世以来,自然语言处理(NLP)领域经历了革命性突破。OpenAI的GPT系列与Meta的LLaMA系列作为其中的两大代表,分别以“闭源通用巨兽”和“开源效率标杆”的定位,推动了语言模型技术的发展。本文将从架构设计、核心技术、训练优化、应用场景等维度,深入解析两者的技术差异与创新逻辑,并探讨其对行业的影响。
一、GPT系列架构演进与核心技术
1.1 发展历程:从GPT-1到GPT-4
- GPT-1(2018):基于Transformer解码器结构,1.1亿参数,首次验证预训练-微调框架的有效性。
- GPT-2(2019):参数增至15亿,引入多任务学习能力,无需微调即可完成文本生成、翻译等任务。
- GPT-3(2020):参数量达1750亿,实现零样本学习(Zero-shot),仅通过提示即可完成复杂任务。
- GPT-4(2023):支持多模态输入(文本+图像),推理能力显著增强,引入安全对齐机制降低生成风险。
1.2 架构设计特点
- 密集Transformer解码器:仅使用解码器堆叠,通过因果掩码实现自回归生成。
- 绝对位置编码:早期版本采用固定位置编码,GPT-4引入旋转位置编码(RoPE)增强长序列处理能力。
- 规模扩展法则:遵循“参数越多性能越强”的暴力美学,GPT-4推测参数量达1.8万亿。
# 标准GPT解码器结构伪代码
class GPTDecoderBlock(nn.Module):
def __init__(self):
super().__init__()
self.attention = MultiHeadAttention()