摘要 随着大语言模型(LLM)从文本生成工具进化为自主决策与执行的智能体(Agent),企业级AI应用正经历范式转移。Gartner预测2025年企业级Agent应用将增长300%,覆盖客服、金融分析、工业质检等核心场景。本文以LangChain框架为核心,深度解析企业级智能体的架构设计、关键技术模块与落地实践,涵盖记忆系统优化、多Agent协作、安全合规等关键挑战,并提供可复用的工程方案。 一、智能体架构全景:五大核心模块与工作流 1.1 企业级智能体的核心组件 工具调用 直接生成 用户输入 规划模块 决策路由 工具执行 LLM引擎 结果解析 输出生成 记忆更新