RAG-检索增强生成

术语“检索增强生成(RAG)”最早是由Daniel Lewis等人在2020年提出的

在他们的研究论文中,Lewis等人提出了将预训练的检索器与预训练的seq2seq模型(生成器)相结合的方法,并进行端到端的微调,以实现更模块化和可解释的知识获取方式。这种方法允许模型在生成回答时访问外部知识源,从而提供更准确且信息丰富的答案。RAG技术的出现为人工智能领域带来了新的视角和创新思路,尤其在问答、对话生成和文本摘要等任务中展现出了卓越的潜力。

总的来说,RAG技术的发展不仅涉及到下游任务的应用和评估体系的完善,还包括了相关技术栈的发展,如检索技术和生成模型的进一步优化。这些进展共同推动了RAG技术在处理复杂查询和生成信息丰富响应方面的能力。

检索增强生成(RAG)技术是一种优化大型语言模型(LLM)输出的方法,它通过在生成响应之前引用训练数据来源之外的权威知识库来提高答案的质量和准确性

RAG技术的工作流程可以分为三个主要阶段:

1)检索阶段:在这个阶段,用户的查询被用来从外部知识源检索相关的上下文信息。为了实现这一点,需要一个嵌入模型将用户查询嵌入到一个向量空间,这个空间与向量数据库中的额外上下文相同。这样就可以进行相似性搜索,从向量数据库中返回最接近的前k个数据对象。

2)增强阶段:在检索到相关信息后,这些信息会被整合到用户的原始查询中。这通常通过将用户查询和检索到的额外上下文放入一个提示模板中来完成,从而为LLM提供一个增强后的提示

3)生成阶段:最后,将增强后的提示输入到大型语言模型(LLM)中进行生成。这样,LLM在处理查询时就像是先查阅了外部的“参考资料”,然后再基于这些最新的、来自外部的信息给出回答。这样的流程使得LLM在回答问题时更加准确和丰富。

总的来说,RAG技术的出现是为了解决LLM在面对需要大量背景知识或事实性信息的复杂问题时的局限性。通过结合信息检索和文本生成,RAG能够提供更准确、更详细的回答,从而提高用户体验和满意度。

RAG技术在哪些任务中展现出了卓越的潜力?

RAG技术在问答系统、文档生成和自动摘要以及智能助手和虚拟代理等任务中展现出了卓越的潜力

首先,问答系统是RAG技术发挥作用的一个重要领域。通过从大规模文档集合中检索出相关信息,RAG能够提供准确的答案,而无需针对每个问题进行特定训练。这种能力使得问答系统更加强大,能够处理更广泛的知识领域和更复杂的查询。

其次,文档生成和自动摘要也是RAG技术的一个应用场景。RAG可以基于检索到的知识来填充文本,从而生成内容丰富、信息价值高的文档或摘要。这对于新闻生成、学术文章撰写等领域尤其有用,因为它可以帮助确保生成的文本包含了最新和最相关的信息。

最后,智能助手和虚拟代理也能从RAG技术中受益。这些应用可以利用RAG结合聊天记录来回答用户的问题、提供信息和执行任务,无需进行特定任务的微调。这不仅提高了用户体验,也使得智能助手和虚拟代理更加灵活和可靠。

总的来说,RAG技术通过结合信息检索和文本生成,显著提高了大型语言模型在实际应用中的实用性和可信度。它不仅缓解了大模型的幻觉问题,还提高了知识更新的速度,并增强了内容生成的可追溯性。这些优势使得RAG技术在自然语言处理领域具有广泛的应用前景。

RAG技术如何提高大型语言模型的实用性和可信度?

RAG技术通过结合大型语言模型(LLM)的内在知识和外部数据库的信息,显著提高了LLM在实际应用中的实用性和可信度

首先,RAG技术能够缓解大模型的幻觉问题,即模型生成不准确或不存在的信息的倾向。通过将外部数据库的知识整合到生成过程中,RAG确保了输出内容的准确性。

其次,RAG技术提高了知识更新的速度。由于大模型的训练数据集是固定的,随着时间的推移,模型的知识可能会变得过时。RAG通过实时检索最新的信息,确保了生成的内容反映了当前的知识状态。

最后,RAG技术增强了内容生成的可追溯性。在RAG流程中,生成的信息是基于具体的、可检索的数据源,这使得生成过程更加透明,用户可以轻松验证信息的来源。

总的来说,RAG技术通过这些方式提升了大型语言模型的表现,使其在处理知识密集型任务时更加可靠和有效。

### 检索增强生成 RAG 技术原理 检索增强生成RAG)是一种融合了检索技术和生成模型的方法,旨在通过结合外部知识库中的信息来改进自然语言处理任务的效果。具体而言,在面对特定查询时,系统会先利用检索模块从大量文档或其他形式的数据集中提取最相关的片段或条目;随后这些被选中的资料作为附加输入提供给生成组件,帮助其构建更加精准且富含背景支持的回答。 #### 工作流程概述 1. **检索阶段**:当接收到用户提出的请求后,RAG架构内的搜索引擎负责查找与之匹配度最高的若干候选答案来源。此过程可能涉及全文搜索、关键词定位或是更复杂的语义相似度计算等方式[^3]。 2. **生成阶段**:紧接着上述操作所得的结果会被传递至预训练的语言模型那里。此时后者不仅要理解原始问题本身所表达的意思,还需充分吸收由前者所提供的额外素材,并据此产出既贴合事实又具备良好流畅性的最终回复[^2]。 为了确保整个系统的高效运作以及输出质量,还需要特别关注以下几个方面: - 对于检索部分来说,采用先进的算法设计至关重要。这包括但不限于考虑如何衡量不同文本间的关联程度、怎样快速锁定目标范围等问题。实践中往往倾向于运用诸如BM25、TF-IDF这样的经典方案或者是基于深度学习框架下的新兴手段如BERT等来进行优化配置[^4]。 - 针对生成环节,则强调要让模型学会有效整合多源异构的知识表示形式——即能够把来自结构化表格记录、半结构性网页内容乃至纯叙述性描述等各种类型的有用资讯无缝衔接到一起,从而实现高质量的对话交互体验[^1]。 ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq") input_dict = tokenizer.prepare_seq2seq_batch( "What is the capital of France?", return_tensors="pt" ) outputs = model.generate(input_ids=input_dict["input_ids"], context_input_ids=retriever(contexts=["Paris"])) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顺其自然~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值