炼丹之路—深度学习理论篇 理论基础 从线性回归开始了解梯度下降算法(整体梯度下降,随机梯度下降,小批量梯度下降)掌握分类和回归的区别学习二分类掌握sigmoid函数熟悉矩阵运算(关于numpy的使用) 理论进阶 掌握全连接神经网络关于全连接神经网络的多分类问题掌握softmax函数的使用掌握卷积神经网络的理论知识(包括卷积神经网络的图像维度运算)