萌新的炼丹之路—视觉组之深度学习理论篇

炼丹之路—深度学习理论篇

  1. 理论基础
  • 从线性回归开始
  • 了解梯度下降算法(整体梯度下降,随机梯度下降,小批量梯度下降)
  • 掌握分类和回归的区别
  • 学习二分类
  • 掌握sigmoid函数
  • 熟悉矩阵运算(关于numpy的使用)
  1. 理论进阶
  • 掌握全连接神经网络
  • 关于全连接神经网络的多分类问题
  • 掌握softmax函数的使用
  • 掌握卷积神经网络的理论知识(包括卷积神经网络的图像维度运算)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值