1. Domain Adaptation 问题
单域(single-domain)的行人重识别(ReID)近来已经取得了巨大的进展,但是在跨域(cross domain,或者迁移 transfer)问题上却存在很大的困难。
主要体现在直接把训好的模型用在目标域(target domain)测试,性能有巨大的下降。例如目前在Market1501上Top1最高可以达到95%以上的模型,直接用于非同源任务,如DukeMTMC-reid,Top1往往不到40%
这在机器学习领域普遍存在。而考虑到ReID领域相对较小的数据集和较单一的场景,这个问题就格外严重了。
2. cross-domain reid
训练集来自于source domain,而测试集来自target domain,两个数据集之间通常存在显著的域间间隔domain gap。例如,
- 公开数据集Market-1501采集在夏天国内校园,行人多着短袖、色彩也相对鲜明;
- 而DukeMTMC-reID采集于冬季国外校园,行人多着厚重冬装、色彩也相对暗沉。
这种显著的着装风格差异塑造了两个数据集之间的domain gap,并降低模型在这两个数据集之间跨域使用的准确率,对模型的泛化能力提出了很高的要求。
3. 当前的解决方法
- source domain向target domain风格迁移。该方案直截了当,希望能够把训练样本(sour