[大语言模型-论文精读] 利用多样性进行大型语言模型预训练中重要数据的选择

[大语言模型-论文精读] 利用多样性进行大型语言模型预训练中重要数据的选择

论文信息:

Harnessing Diversity for Important Data Selection in Pretraining Large Language Models
Authors: Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai, Jiantao Qiu, Lei Cao, Ye Yuan, Guoren Wang and Conghui He
在这里插入图片描述

1. 概览

问题解决:
这篇论文解决的主要问题是在预训练大型语言模型(LLMs)时,如何从大规模可用的训练语料库中选择数据的问题。特别是在数据质量参差不齐的情况下,如何有效地选择对模型性能提升有重要影响的数据实例。

研究结果:
论文提出了一种名为Quad的新方法,该方法在考虑数据质量的同时,还考虑了数据的多样性。Quad利用数据影响(influence)来评估数据质量,并通过簇聚类和多臂赌博机(Multi-Armed Bandit, MAB)方法来确保数据多样性。实验结果表明,Quad方法在预训练阶段能够达到最先进的结果。

2. 研究背景

技术背景:
大型语言模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sp_fyf_2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值