CMOS带反馈反相器二阶系统分析

 

Complex Conjugate Pole Analysis for Bandwidth

二阶系统理论公式

 

如果有三阶多项式,会产生一对共轭复极点和一个实数极点

阻尼因子和自然频率是实极点

上式中如果γ很大,可以写作

 

电路与等效电路

传输函数

 

(1)电阻反馈,电感为0

 

 

 

(2)电感反馈

 

带宽公式 

通过改变电感可以改变带宽

 

 

### 多路反馈反相型二阶低通滤波器设计与应用 #### 设计原理 多路反馈反相型二阶低通滤波器是一种常见的有源滤波器结构,具有较高的灵活性和稳定性。该类滤波器通过多个电容和电阻组成的反馈网络来调整传递函数中的零极点位置。 对于此类滤波器而言,其基本构成包括运算放大器以及连接在其周围的若干个R-C元件。具体来说: - 输入信号经由一个或多个串联的耦合电容器进入运放的负输入端; - 正向路径上存在至少一对相互关联的RC时间常数组合用于形成所需的频率响应特性; - 反馈回路上则布置了另一组不同的RC组件以提供必要的补偿作用并决定系统的闭环行为。 这种配置使得多路反馈反相型架构能够有效地抑制高频成分而让低于截止频率范围内的交流分量顺利通过[^1]。 为了更直观理解上述概念,下面给出一个多路反馈反相型二阶低通滤波器的具体电路模型及其对应的传递函数表达式: ```circuitikz \begin{circuitikz}[american, scale=0.85] % Nodes definition \node (in) at (-2, 0) {}; \node[op amp] (opamp) at (0, 0) {OA}; % Input and output labels \draw (in) node[left] {$V_{in}$} to[R=$R_1$, o-*] ++(right:2cm); \draw (opamp.-) --++(-left:1cm) coordinate (neg_in); \draw (neg_in) to[C=$C_1$,*-o] ++(down:2cm) node[right]{GND}; \draw (opamp.out) |- ($(opamp.out)+(1,-1)$) node[right]{$V_{out}$}; % Feedback path components \draw (opamp.out) --++(right:1.5cm) coordinate (fb_start); \draw (fb_start) to[R=$R_f$, *-*] ++(down:2cm) coordinate (fb_end); \draw (fb_end) to[C=$C_f$, -*] (neg_in); % Ground connections \foreach \i in {-1,...,1}{ \ifnum\i=-1 \draw (\i*2, -2) node[ground]{} ; \fi; } \end{circuitikz} ``` 根据此图所示布局,可以推导出相应的S域表示形式如下: \[ H(s)=\frac{V_o}{V_i}=K\cdot\frac{\omega_n^2}{s^2+\frac{\omega_n}{Q}s+\omega_n^2}\tag{1} \] 其中 \( K=\frac{-R_f}{R_1},\quad Q=\sqrt{\frac{(R_1+C_f)(R_f+C_1)}{R_1 R_f C_1 C_f}},\quad \omega_n=\frac{1}{\sqrt{R_1 R_f C_1 C_f}}\) 表达的是自然角频率、品质因子及增益比例关系[^3]。 #### 应用场景 这类滤波器广泛应用于音频处理领域中去除不需要的声音噪声;通信系统里作为前置级选频装置确保后续模块只接收到特定频段的信息流;医疗电子设备内部用来净化生物电信号从而提高诊断准确性等等。由于具备良好的线性和动态范围表现加之易于集成到现有硬件平台上的特点,因此成为众多工程师首选方案之一[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大大U

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值