0301微分中值定理-微分中值定理与导数的应用

1 罗尔定理

在这里插入图片描述

费马引理 设函数 f ( x ) 在点 x 0 f(x)在点x_0 f(x)在点x0的某邻域 U ( x 0 ) U(x_0) U(x0)内有定义,并且在点 x 0 x_0 x0处可导,如果对任意的 x ∈ U ( x 0 ) , x\in U(x_0), xU(x0),

f ( x ) ≤ f ( x 0 ) ( 或 f ( x ) ≥ f ( x 0 ) ) f(x)\le f(x_0)(或f(x)\ge f(x_0)) f(x)f(x0)(f(x)f(x0))

那么 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0

以 f ( x ) ≤ f ( x 0 ) 为例 证明:设 x ∈ U ( x 0 ) , f ( x ) ≤ f ( x 0 ) 则 x 0 + △ x ∈ U ( x 0 ) , 有 f ( x 0 + △ x ) ≤ f ( x 0 ) 从而当 △ x > 0 时, f ( x 0 + △ x ) − f ( x 0 ) △ x ≤ 0 当 △ x < 0 时, f ( x 0 + △ x ) − f ( x 0 ) △ x ≥ 0 又因为 f ( x ) 在点 x 0 处可导,即 f ′ ( x 0 ) 存在 f ′ ( x 0 ) = f + ′ ( x 0 ) = lim ⁡ △ x → 0 + f ( x 0 + △ x ) − f ( x 0 ) △ x ≤ 0 f ′ ( x 0 ) = f − ′ ( x 0 ) = lim ⁡ △ x → 0 − f ( x 0 + △ x ) − f ( x 0 ) △ x ≥ 0 所以 f ′ ( x 0 ) = 0 以f(x)\le f(x_0)为例\\ 证明: 设x\in U(x_0),f(x)\le f(x_0) \\ 则x_0+\triangle x\in U(x_0),有 f(x_0+\triangle x)\le f(x_0) \\ 从而当\triangle x\gt 0时,\frac{f(x_0+\triangle x)-f(x_0)}{\triangle x}\le0 \\ 当\triangle x\lt 0时,\frac{f(x_0+\triangle x)-f(x_0)}{\triangle x}\ge0 \\ 又因为f(x)在点x_0处可导,即f^{'}(x_0)存在 \\ f^{'}(x_0)=f^{'}_{+}(x_0)=\lim\limits_{\triangle x\to0^+}{\frac{f(x_0+\triangle x)-f(x_0)}{\triangle x}}\le0 \\ f^{'}(x_0)=f^{'}_{-}(x_0)=\lim\limits_{\triangle x\to0^-}{\frac{f(x_0+\triangle x)-f(x_0)}{\triangle x}}\ge0 \\ 所以f^{'}(x_0)=0 f(x)f(x0)为例证明:设xU(x0),f(x)f(x0)x0+xU(x0),f(x0+x)f(x0)从而当x>0时,xf(x0+x)f(x0)0x<0时,xf(x0+x)f(x0)0又因为f(x)在点x0处可导,即f(x0)存在f(x0)=f+(x0)=x0+limxf(x0+x)f(x0)0f(x0)=f(x0)=x0limxf(x0+x)f(x0)0所以f(x0)=0

通常称导数等于零的点为函数的驻点(或稳定点,临界点)

罗尔定理 如果函数 f ( x ) f(x) f(x)满足

(1)在闭区间 [ a , b ] [a,b] [a,b]上连续

(2)在开区间 ( a , b ) (a,b) (a,b)上可导

(3)在区间端点处的函数值相等,即 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),

那么在 ( a , b ) (a,b) (a,b)内至少存在一点 ξ ( a < ξ < b ) \xi(a\lt\xi\lt b) ξ(a<ξ<b),使得 f ′ ( ξ ) = 0 f^{'}(\xi)=0 f(ξ)=0

证明:因为函数在 [ a , b ] 上连续,根据闭区间上连续函数的最大值最小值定理 f ( x ) 在闭区间 [ a , b ] 上必取得最大值 M 和最小值 m ,有两种情况 ( 1 ) M = m ,即 f ( x ) 在 [ a , b ] 为常数 M ,任取 ξ ∈ [ a , b ] , 有 f ′ ( ξ ) = 0 ( 2 ) M > m , 因为 f ( a ) = f ( b ) , 所以 M 和 m 这两个数中至少有一个不等于端点处的值,这里假设 M ≠ f ( a ) 则必定在开区间 ( a , b ) 内存在一点 ξ , 使得 f ( ξ ) = M 任取 x ∈ ( a , b ) , 则 f ( x ) ≤ f ( ξ ) , 根据费马引理得 f ′ ( ξ ) = 0 证明:因为函数在[a,b]上连续,根据闭区间上连续函数的最大值最小值定理 \\ f(x)在闭区间[a,b]上必取得最大值M和最小值m,有两种情况 \\ (1)M=m,即f(x)在[a,b]为常数M,任取\xi\in[a,b],有f^{'}(\xi)=0 \\ (2)M\gt m,因为f(a)=f(b),所以M和m这两个数中至少有一个不等于端点处的值,这里假设M\not=f(a) \\ 则必定在开区间(a,b)内存在一点\xi,使得f(\xi)=M \\ 任取x\in(a,b),则f(x)\le f(\xi),根据费马引理得f^{'}(\xi)=0 证明:因为函数在[a,b]上连续,根据闭区间上连续函数的最大值最小值定理f(x)在闭区间[a,b]上必取得最大值M和最小值m,有两种情况(1)M=m,即f(x)[a,b]为常数M,任取ξ[a,b],f(ξ)=0(2)M>m,因为f(a)=f(b),所以Mm这两个数中至少有一个不等于端点处的值,这里假设M=f(a)则必定在开区间(a,b)内存在一点ξ,使得f(ξ)=M任取x(a,b),f(x)f(ξ),根据费马引理得f(ξ)=0

例1 证明 4 a x 3 + 3 b x 2 + 2 c x = a + b + c 在 ( 0 , 1 ) 4ax^3+3bx^2+2cx=a+b+c在(0,1) 4ax3+3bx2+2cx=a+b+c(0,1)内至少有一个根。
解:等号右侧左移得到以函数式,则 令 f ( x ) = 4 a x 3 + 3 b x 2 + 2 c x − ( a + b + c ) 要证明 f ( x ) 在 ( 0 , 1 ) 内至少有一个根 即证明 f ( x ) = 0 , x ∈ ( 0 , 1 ) , 根据上面学习的罗尔定理,我们来构建导函数为 f ( x ) 的原函数 F ( x ) = a x 4 + b x 3 + c x 2 − ( a + b + c ) x + C , 则 F ( 0 ) = C , F ( 1 ) = C , 很明显 F ( x ) 在 [ 0 , 1 ] 上连续,在 ( 0 , 1 ) 上可导且 F ( 0 ) = F ( 1 ) 根据罗尔定理有 ∃ ξ ∈ ( 0 , 1 ) 使得 f ′ ( ξ ) = 0 即 4 a x 3 + 3 b x 2 + 2 c x − ( a + b + c ) = 0 即 4 a x 3 + 3 b x 2 + 2 c x = a + b + c 解:等号右侧左移得到以函数式,则\\ 令f(x)=4ax^3+3bx^2+2cx-(a+b+c)要证明f(x)在(0,1)内至少有一个根 \\ 即证明f(x)=0,x\in(0,1) ,根据上面学习的罗尔定理,我们来构建导函数为f(x)的原函数 \\ F(x)=ax^4+bx^3+cx^2-(a+b+c)x+C ,则 \\ F(0)=C,F(1)=C,很明显F(x)在[0,1]上连续,在(0,1)上可导且F(0)=F(1) \\ 根据罗尔定理有\exists\xi\in(0,1)使得f^{'}(\xi)=0即 \\ 4ax^3+3bx^2+2cx-(a+b+c)=0即4ax^3+3bx^2+2cx=a+b+c 解:等号右侧左移得到以函数式,则f(x)=4ax3+3bx2+2cx(a+b+c)要证明f(x)(0,1)内至少有一个根即证明f(x)=0,x(0,1),根据上面学习的罗尔定理,我们来构建导函数为f(x)的原函数F(x)=ax4+bx3+cx2(a+b+c)x+C,F(0)=CF(1)=C,很明显F(x)[0,1]上连续,在(0,1)上可导且F(0)=F(1)根据罗尔定理有ξ(0,1)使得f(ξ)=04ax3+3bx2+2cx(a+b+c)=04ax3+3bx2+2cx=a+b+c
例2 设 f ( x ) 在 [ 0 , a ] f(x)在[0,a] f(x)[0,a]上连续,在 ( 0 , a ) (0,a) (0,a)内可导,且 f ( a ) = 0 f(a)=0 f(a)=0证明存在一点 ξ ∈ ( 0 , a ) , 使得 f ( ξ ) = − ξ f ′ ( ξ ) \xi\in(0,a),使得f(\xi)=-\xi f^{'}(\xi) ξ(0,a),使得f(ξ)=ξf(ξ)
证明:要证明 ξ ∈ ( 0 , a ) , 使得 f ( ξ ) = − ξ f ′ ( ξ ) ,即 f ( ξ ) + ξ f ′ ( ξ ) = 0 令 g ( x ) = f ( x ) + x f ′ ( x ) , x ∈ ( 0 , a ) , 构建 g ( x ) 的原函数 G ( x ) = x f ( x ) + C , C 为常数 则 G ( x ) 在 [ 0 , a ] 上连续,在 ( 0 , a ) 上可导且 G ( 0 ) = C = G ( a ) = C , 根据罗尔定理,有 ∃ ξ ∈ ( 0 , a ) 使得 G ′ ( ξ ) = 0 即 f ( ξ ) + ξ f ′ ( ξ ) = 0 即 f ( ξ ) = − ξ f ′ ( ξ ) 证明:要证明\xi\in(0,a),使得f(\xi)=-\xi f^{'}(\xi),即f(\xi)+\xi f^{'}(\xi)=0 \\ 令g(x)=f(x)+xf^{'}(x),x\in(0,a) ,\\ 构建g(x)的原函数G(x)=xf(x)+C,C为常数 \\ 则G(x)在[0,a]上连续,在(0,a)上可导且G(0)=C=G(a)=C,\\ 根据罗尔定理,有\exists\xi\in(0,a)使得G^{'}(\xi)=0 \\ 即f(\xi)+\xi f^{'}(\xi)=0 即f(\xi)=-\xi f^{'}(\xi) 证明:要证明ξ(0,a),使得f(ξ)=ξf(ξ),即f(ξ)+ξf(ξ)=0g(x)=f(x)+xf(x),x(0,a),构建g(x)的原函数G(x)=xf(x)+C,C为常数G(x)[0,a]上连续,在(0,a)上可导且G(0)=C=G(a)=C,根据罗尔定理,有ξ(0,a)使得G(ξ)=0f(ξ)+ξf(ξ)=0f(ξ)=ξf(ξ)

2 拉格朗日定理

拉格朗日定理 如果函数 f ( x ) f(x) f(x)满足

(1)在闭区间 [ a , b ] [a,b] [a,b]上连续

(2)在开区间 ( a , b ) (a,b) (a,b)上可导

那么在 ( a , b ) (a,b) (a,b)内至少存在一点 ξ ( a < ξ < b ) \xi(a\lt\xi\lt b) ξ(a<ξ<b),使等式

f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) 或者 f ′ ( ξ ) = f ( b ) − f ( a ) b − a f(b)-f(a)=f^{'}(\xi)(b-a)或者f^{'}(\xi)=\frac{f(b)-f(a)}{b-a} f(b)f(a)=f(ξ)(ba)或者f(ξ)=baf(b)f(a)

成立。

注:

  • 另外一种形式: f ( b ) − f ( a ) = f ′ [ a + θ ( b − a ) ] ( b − a ) ( 0 < θ < 1 ) f(b)-f(a)=f^{'}[a+\theta(b-a)](b-a)(0\lt\theta\lt1) f(b)f(a)=f[a+θ(ba)](ba)(0<θ<1)
  • x , x + △ x ∈ ( a , b ) x,x+\triangle x\in(a,b) x,x+x(a,b),以 ( x , x + △ x ) (x,x+\triangle x) (x,x+x)为端点区间 f ( x ) f(x) f(x)显然也满足拉格朗日定理,导入公式得$f(x+\triangle x)-f(x)=f^{'}(x+\theta\triangle x)\triangle x(0\lt\theta\lt0 ) $ 等式左侧为函数的增量,替换为 △ y , 即 △ y = f ′ ( x + θ △ x ) △ x \triangle y,即\triangle y = f^{'}(x+\theta\triangle x)\triangle x y,y=f(x+θx)x。上式给出了自变量取得优先增量时,函数增量的准确表达式。

定理 如果函数 f ( x ) f(x) f(x)在区间 I I I上连续, I I I内可导且导数恒为零,那么 f ( x ) f(x) f(x)在区间 I I I上是一个常数。

例3 证明 arcsin ⁡ x + arccos ⁡ x = π 2 ( − 1 ≤ x ≤ 1 ) \arcsin x+\arccos x=\frac{\pi}{2}(-1\le x\le1) arcsinx+arccosx=2π(1x1)
证明: ( arcsin ⁡ x + arccos ⁡ x ) ′ = 1 1 − x 2 − 1 1 − x 2 = 0 所以 arcsin ⁡ x + arccos ⁡ x 在 [ − 1 , 1 ] 为常数,令 x = 1 ,得 arcsin ⁡ x + arccos ⁡ x = π 2 证明:(\arcsin x+\arccos x)^{'}=\frac{1}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}=0 \\ 所以\arcsin x+\arccos x在[-1,1]为常数,令x=1,得\\ \arcsin x+\arccos x=\frac{\pi}{2} 证明:(arcsinx+arccosx)=1x2 11x2 1=0所以arcsinx+arccosx[1,1]为常数,令x=1,得arcsinx+arccosx=2π
例4 证明当 x > 0 x\gt 0 x>0时, x 1 + x < ln ⁡ ( 1 + x ) < x \frac{x}{1+x}\lt\ln(1+x)\lt x 1+xx<ln(1+x)<x
证明:令 f ( x ) = ln ⁡ ( 1 + x ) , x > 0 在区间 ( 0 , x ) 内, f ( x ) 满足拉格朗日定理,所以 f ( x ) − f ( 0 ) = f ′ ( ξ ) ⋅ x , f ′ ( x ) = 1 1 + x f ( x ) = x 1 + ξ ( 0 < ξ < x ) 因为 0 < ξ < x ,所以 x 1 + x < x 1 + ξ < x 即 x 1 + x < ln ⁡ ( 1 + x ) < x 证明:令f(x)=\ln(1+x),x\gt0 \\ 在区间(0,x)内,f(x)满足拉格朗日定理,所以 \\ f(x)-f(0)=f^{'}(\xi)\cdot x,f^{'}(x)=\frac{1}{1+x}\\ f(x)=\frac{x}{1+\xi}(0\lt\xi\lt x) \\ 因为0\lt\xi\lt x,所以\frac{x}{1+x}\lt\frac{x}{1+\xi}\lt x\\ 即\frac{x}{1+x}\lt\ln(1+x)\lt x 证明:令f(x)=ln(1+x),x>0在区间(0,x)内,f(x)满足拉格朗日定理,所以f(x)f(0)=f(ξ)x,f(x)=1+x1f(x)=1+ξx(0<ξ<x)因为0<ξ<x,所以1+xx<1+ξx<x1+xx<ln(1+x)<x

3 柯西中值定理

柯西中值定理 如果函数 f ( x ) 及 F ( x ) f(x)及F(x) f(x)F(x)满足

(1)在闭区间 [ a , b ] [a,b] [a,b]上连续

(2)在开区间 ( a , b ) (a,b) (a,b)上可导

(3)对于任一 x ∈ ( a , b ) , F ′ ( x ) ≠ 0 x\in(a,b),F^{'}(x)\not=0 x(a,b),F(x)=0

那么 ( a , b ) (a,b) (a,b)内至少有一点 ξ \xi ξ,使等式

f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f^{'}(\xi)}{F^{'}(\xi)} F(b)F(a)f(b)f(a)=F(ξ)f(ξ)

成立。

例5 设 0 < a < b , f ( x ) 在 [ a , b ] 0\lt a\lt b,f(x)在[a,b] 0<a<b,f(x)[a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,证明 ∃ ξ ∈ ( a , b ) \exists\xi\in(a,b) ξ(a,b),使得 f ( b ) − f ( a ) = ξ f ′ ( ξ ) ln ⁡ b a f(b)-f(a)=\xi f^{'}(\xi)\ln\frac{b}{a} f(b)f(a)=ξf(ξ)lnab
证明,令 F ( x ) = ln ⁡ x , 当 x ∈ [ a , b ] 时, f ( x ) 及 F ( x ) 满足柯西中值定理条件,所以 ∃ ξ ∈ ( a , b ) 使得 f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) 因为 ( ln ⁡ x ) ′ = 1 x f ( b ) − f ( a ) ln ⁡ b − ln ⁡ a = f ′ ( ξ ) F ′ ( ξ ) = ξ f ′ ( ξ ) 化简得 f ( b ) − f ( a ) = ξ f ′ ( ξ ) ln ⁡ b a 证明,令F(x)=\ln x,当x\in[a,b]时,f(x)及F(x)满足柯西中值定理条件,所以\\ \exist\xi\in(a,b)使得\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f^{'}(\xi)}{F^{'}(\xi)} \\ 因为(\ln x)^{'}=\frac{1}{x} \\ \frac{f(b)-f(a)}{\ln b-\ln a}=\frac{f^{'}(\xi)}{F^{'}(\xi)}=\xi f^{'}(\xi) \\ 化简得f(b)-f(a)=\xi f^{'}(\xi)\ln\frac{b}{a} 证明,令F(x)=lnx,x[a,b]时,f(x)F(x)满足柯西中值定理条件,所以ξ(a,b)使得F(b)F(a)f(b)f(a)=F(ξ)f(ξ)因为(lnx)=x1lnblnaf(b)f(a)=F(ξ)f(ξ)=ξf(ξ)化简得f(b)f(a)=ξf(ξ)lnab

5后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P110~p120.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p17.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值