0903全微分-多元函数微分法及其应用

一、全微分的定义

根据一元函数微分学中增量的与微分的关系,可得
f ( x + Δ x , y ) − f ( x , y ) ≈ f x ( x , y ) Δ x f ( x , y + Δ y ) − f ( x , y ) ≈ f y ( x , y ) Δ y f(x+\Delta x,y)-f(x,y)\approx f_x(x,y)\Delta x \\ f(x,y+\Delta y)-f(x,y)\approx f_y(x,y)\Delta y f(x+Δx,y)f(x,y)fx(x,y)Δxf(x,y+Δy)f(x,y)fy(x,y)Δy
上述两式的左端分别叫做二元函数的对x和y的偏增量,而右端分别叫做二元函数对x和y的偏微分。

设函数 z = f ( x , y ) 在点 P ( x , y ) z=f(x,y)在点P(x,y) z=f(x,y)在点P(x,y)的某邻域内有定义, P ′ ( x + Δ x , y + Δ y ) P^{'}(x+\Delta x,y+\Delta y) P(x+Δx,y+Δy)为这邻域内的任意一点,则称这两点间的数值之差 f ( x + Δ x , y + Δ y ) − f ( x , y ) f(x+\Delta x,y+\Delta y)-f(x,y) f(x+Δx,y+Δy)f(x,y)为函数在点P对应于自变量增量 Δ x 和 Δ y \Delta x和\Delta y ΔxΔy的全增量,记作 Δ z \Delta z Δz,即
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z = f(x+\Delta x,y+\Delta y) - f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)

设函数 z = f ( x , y ) 在点 ( x , y ) z=f(x,y)在点(x,y) z=f(x,y)在点(x,y)的某邻域内有定义,如果函数在点 ( x , y ) 的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) (x,y)的全增量\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) (x,y)的全增量Δz=f(x+Δx,y+Δy)f(x,y)可表示为
Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z =A\Delta x+B\Delta y + o(\rho) Δz=AΔx+BΔy+o(ρ)
其中A和B不依赖于 Δ x 和 Δ y 而仅和 x 和 y \Delta x和\Delta y而仅和x和y ΔxΔy而仅和xy有关, ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 ,那么称函数 z = f ( x , y ) 在点 ( x , y ) z=f(x,y)在点(x,y) z=f(x,y)在点(x,y)可微分,而 A Δ x + B Δ y 称为函数 z = f ( x , y ) 在点 ( x , y ) A\Delta x+B\Delta y称为函数z=f(x,y)在点(x,y) AΔx+BΔy称为函数z=f(x,y)在点(x,y)的全微分,记作 d z dz dz,即
d z = A Δ x + B Δ y dz=A\Delta x+B\Delta y dz=AΔx+BΔy

如果函数在区域D内各点都可微分,那么称函数在D内可微分。

注:

  1. 如果函数 z = f ( x , y ) 在点 ( x , y ) z=f(x,y)在点(x,y) z=f(x,y)在点(x,y)可微分,那么该函数在该点连续

$$
证明:\
函数z=f(x,y)在(x,y)处可微分\
\therefore \lim\limits_{\rho \to0}{\Delta z}=0\

\lim\limits_{(\Delta x,\Delta y)\to(0,0)}{f(x+\Delta x,y+\Delta y)}=\lim\limits_{\rho\to0}{[f(x,y)+\Delta z]}=f(x,y) \
\therefore 函数z=f(x,y)在点(x,y)处连续
$$

定理1(必要条件)如果函数 z = f ( x , y ) 在点 ( x , y ) z=f(x,y)在点(x,y) z=f(x,y)在点(x,y)可微分,那么该函数在点 ( x , y ) (x,y) (x,y)的偏导数 ∂ z ∂ x 和 ∂ z ∂ y \frac{\partial z}{\partial x}和\frac{\partial z}{\partial y} xzyz必定存在,且函数 z = f ( x , y ) 在点 ( x , y ) z=f(x,y)在点(x,y) z=f(x,y)在点(x,y)的全微分为
d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y dz=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y dz=xzΔx+yzΔy

证明; 设函数 z = f ( x , y ) 在点 P ( x , y ) 处可微分,对于点 P 的某个邻域内的任意一点 P ′ ( x + Δ x , y + Δ y ) , 有 Δ z = A Δ x + B Δ y + o ( ρ ) 取 Δ y = 0 , 则 ρ = ∣ Δ x ∣ , 得 f ( x + Δ x , y ) − f ( x , y ) = A Δ x + o ( ∣ Δ x ) 上式两边各除以 Δ x , 在令 Δ x → 0 ,取极限,有 lim ⁡ Δ x → 0 f ( x + Δ x , y ) − f ( x , y ) Δ x = A 即 ∂ z ∂ x = A 同理可证 ∂ z ∂ y = B ∴ d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y 证明;\\ 设函数z=f(x,y)在点P(x,y)处可微分,对于点P的某个邻域内的任意一点P^{'}(x+\Delta x,y+\Delta y),有\\ \Delta z=A\Delta x + B\Delta y +o(\rho) \\ 取\Delta y =0,则\rho=|\Delta x|,得\\ f(x+\Delta x,y)-f(x,y)=A\Delta x+o(|\Delta x)\\ 上式两边各除以\Delta x,在令\Delta x\to0,取极限,有\\ \lim\limits_{\Delta x\to0}{\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}}=A\\ 即\frac{\partial z}{\partial x}=A\\ 同理可证\frac{\partial z}{\partial y}=B\\ \therefore dz=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y 证明;设函数z=f(x,y)在点P(x,y)处可微分,对于点P的某个邻域内的任意一点P(x+Δx,y+Δy),Δz=AΔx+BΔy+o(ρ)Δy=0,ρ=∣Δx,f(x+Δx,y)f(x,y)=AΔx+o(∣Δx)上式两边各除以Δx,在令Δx0,取极限,有Δx0limΔxf(x+Δx,y)f(x,y)=Axz=A同理可证yz=Bdz=xzΔx+yzΔy

注:

1.函数全微分存在 ⇒ \Rightarrow 函数各偏导数存在

示例:
f ( x , y ) = { x y x 2 + y 2 , x 2 + y 2 = 0 , 0 , x 2 + y 2 = 0 在 ( 0 , 0 ) 处 f x ( 0 , 0 ) = 0 , f y ( 0 , 0 ) = 0 ∴ Δ z − [ f x ( 0 , 0 ) Δ x + f y ( 0 , 0 ) Δ y ] = Δ x Δ y ( Δ x ) 2 + ( Δ y ) 2 当点 P ′ ( Δ x , Δ y ) 沿着直线 y = x 趋向于 ( 0 , 0 ) 时, Δ x Δ y ( Δ x ) 2 + ( Δ y ) 2 ρ = ( Δ x ) 2 2 ( Δ x ) 2 = 1 2 表示当 ρ → 0 时, z − [ f x ( 0 , 0 ) Δ x + f y ( 0 , 0 ) Δ y ] 并不是关于 ρ 的高阶无穷小, 因此函数在点( 0 , 0 )处的全微分不存在。 f(x,y)= \begin{cases} \frac{xy}{\sqrt{x^2+y^2}},x^2+y^2=0,\\ 0,x^2+y^2=0 \end{cases}\\ 在(0,0)处f_x(0,0)=0,f_y(0,0)=0\\ \therefore \Delta z-[f_x(0,0)\Delta x+f_y(0,0)\Delta y]=\frac{\Delta x\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\\ 当点P^{'}(\Delta x,\Delta y)沿着直线y=x趋向于(0,0)时, \frac{\frac{\Delta x\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}}{\rho}=\frac{(\Delta x)^2}{2(\Delta x)^2}=\frac{1}{2}\\ 表示当\rho\to0时,z-[f_x(0,0)\Delta x+f_y(0,0)\Delta y]并不是关于\rho的高阶无穷小,\\ 因此函数在点(0,0)处的全微分不存在。 f(x,y)={x2+y2 xy,x2+y2=0,0,x2+y2=0(0,0)fx(0,0)=0,fy(0,0)=0Δz[fx(0,0)Δx+fy(0,0)Δy]=(Δx)2+(Δy)2 ΔxΔy当点P(Δx,Δy)沿着直线y=x趋向于(0,0)时,ρ(Δx)2+(Δy)2 ΔxΔy=2(Δx)2(Δx)2=21表示当ρ0时,z[fx(0,0)Δx+fy(0,0)Δy]并不是关于ρ的高阶无穷小,因此函数在点(0,0)处的全微分不存在。

定理2(充分条件) 如果函数 z = f ( x , y ) 的偏导数 ∂ z ∂ x 、 ∂ z ∂ y 在点 ( x , y ) z=f(x,y)的偏导数\frac{\partial z}{\partial x}、\frac{\partial z}{\partial y}在点(x,y) z=f(x,y)的偏导数xzyz在点(x,y)连续,那么函数在该点可微分。

注:

  1. 偏导连续 ⇒ \Rightarrow 可微分
  2. 偏导连续: lim ⁡ ( x , y ) → ( x 0 , y 0 ) f x ′ ( x , y ) = f ′ ( x 0 , y 0 ) , lim ⁡ ( x , y ) → ( x 0 , y 0 ) f y ′ ( x , y ) = f ′ ( x 0 , y 0 ) \lim\limits_{(x,y)\to(x_0,y_0)}{f^{'}_x(x,y)}=f^{'}(x_0,y_0),\lim\limits_{(x,y)\to(x_0,y_0)}{f^{'}_y(x,y)}=f^{'}(x_0,y_0) (x,y)(x0,y0)limfx(x,y)=f(x0,y0),(x,y)(x0,y0)limfy(x,y)=f(x0,y0)

二、全微分公式

1 全微分公式

ρ \rho ρ很小时, Δ z ≈ d z \Delta z\approx dz Δzdz

对于二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的全微分,有
d z = f x ( x , y ) Δ x + f y ( x , y ) Δ y dz=f_x(x,y)\Delta x+f_y(x,y)\Delta y dz=fx(x,y)Δx+fy(x,y)Δy
一般地,记 Δ x = d x , Δ y = d y \Delta x=dx,\Delta y = dy Δx=dx,Δy=dy,则
d z = f x ( x , y ) d x + f y ( x , y ) d y dz=f_x(x,y)dx+f_y(x,y)dy dz=fx(x,y)dx+fy(x,y)dy

2 推广

u = f ( x , y , z ) 在 ( x , y , z ) 处可微 u = f(x,y,z)在(x,y,z)处可微 u=f(x,y,z)(x,y,z)处可微,则
d u = ∂ u ∂ x d x + ∂ u ∂ y d y + ∂ u ∂ z d z du = \frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy+\frac{\partial u}{\partial z}dz du=xudx+yudy+zudz

3 例题

例2 求 z = x 2 y + y 2 的全微分 z=x^2y+y^2的全微分 z=x2y+y2的全微分
解: ∂ z ∂ x = 2 x y , ∂ z ∂ y = x 2 + 2 y d z = ∂ z ∂ x d x + ∂ z ∂ y d y = 2 x y d x + ( x 2 + 2 y ) d y 解:\\ \frac{\partial z}{\partial x} = 2xy,\frac{\partial z}{\partial y}=x^2+2y\\ dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy=2xydx+(x^2+2y)dy 解:xz=2xy,yz=x2+2ydz=xzdx+yzdy=2xydx+(x2+2y)dy

例3 求 z = e x y 在 ( 2 , 1 ) z=e^{xy}在(2,1) z=exy(2,1)处的全微分
解: ∂ z ∂ x = y e x y , ∂ z ∂ y = x e x y d z = y e x y d x + x e x y d y d z ∣ ( 2 , 1 ) = e 2 d x + 2 e 2 d y 解:\\ \frac{\partial z}{\partial x}=ye^{xy},\frac{\partial z}{\partial y}=xe^{xy}\\ dz=ye^{xy}dx+xe^{xy}dy\\ dz|_{(2,1)}=e^2dx+2e^2dy 解:xz=yexy,yz=xexydz=yexydx+xexydydz(2,1)=e2dx+2e2dy

例4 求 u = x + sin ⁡ y 2 + e y z u=x+\sin\frac{y}{2}+e^{yz} u=x+sin2y+eyz的全微分
解: ∂ u ∂ x = 1 , ∂ u ∂ y = 1 2 cos ⁡ y 2 + z e y z , ∂ u ∂ z = y e y z ∴ d u = d x + 1 2 cos ⁡ y 2 d y + y e y z d z 解:\\ \frac{\partial u}{\partial x}=1,\frac{\partial u}{\partial y}=\frac{1}{2}\cos\frac{y}{2}+ze^{yz},\frac{\partial u}{\partial z}=ye^{yz}\\ \therefore du=dx+\frac{1}{2}\cos\frac{y}{2}dy+ye^{yz}dz 解:xu=1,yu=21cos2y+zeyz,zu=yeyzdu=dx+21cos2ydy+yeyzdz
例5 设 z = f ( x , y ) = ∫ 0 x y ( e − t 2 ) d t z=f(x,y)=\int^{xy}_0(e^{-t^2})dt z=f(x,y)=0xy(et2)dt,求 d z dz dz
解: ∂ z ∂ x = e − ( x y ) 2 ⋅ y , ∂ z ∂ y = e − ( x y ) 2 ⋅ x d z = e − ( x y ) 2 ( y d x + x d y ) 解:\\ \frac{\partial z}{\partial x}=e^{-(xy)^2}\cdot y,\frac{\partial z}{\partial y}=e^{-(xy)^2}\cdot x\\ dz=e^{-(xy)^2}(ydx+xdy) 解:xz=e(xy)2y,yz=e(xy)2xdz=e(xy)2(ydx+xdy)

结语

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 下册[M].北京:高等教育出版社,2014.7.p72-77.

[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p66.

  • 23
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值