【深度学习基础之多尺度特征提取】多尺度卷积神经网络(MS-CNN)是如何在深度学习网络中提取多尺度特征的?附代码(二)
【深度学习基础之多尺度特征提取】多尺度卷积神经网络(MS-CNN)是如何在深度学习网络中提取多尺度特征的?附代码(二)
前言
多尺度卷积神经网络(MS-CNN) 是一种通过多尺度特征提取来增强卷积神经网络(CNN)能力的方法。通过将图像输入多个卷积层或卷积核以不同的尺度处理,可以让模型同时捕获到不同尺寸的特征。这种方法特别适合处理目标尺度变化较大的任务,如目标检测、语义分割等。
1. MS-CNN的示例代码实现
我们可以通过多个卷积层、不同大小的卷积核来实现一个简单的 MS-CNN 示例。以下是一个使用 PyTorch 实现的多尺度卷积神经网络,其中通过不同的卷积核来提取多尺度特征。
import torch
import torch.nn