大模型训练——PEFT与LORA介绍

大模型训练中的PEFT(Parameter-Efficient Fine-Tuning)与LoRA(Low-Rank Adaptation)是两种重要的技术,它们在大型预训练模型的应用中发挥着重要作用。

首先,让我们来了解一下PEFT。PEFT是一种参数高效的微调技术,由Huggingface发布。这种方法的核心思想是仅微调少量(额外)模型参数,同时冻结预训练LLM的大部分参数。这样做的好处是大大降低了计算和存储成本,同时克服了灾难性遗忘的问题。灾难性遗忘是指在LLM的全参数微调期间观察到的一种现象,即在微调过程中忘记了预训练阶段学到的知识。PEFT在低数据状态下比全参数微调更好,可以更好地泛化到域外场景。使用PEFT,即使在计算资源受限的情况下,也可以利用预训练模型的知识来迅速适应新任务,实现高效的迁移学习。

接下来,我们来看看LoRA。LoRA是一种低秩适应技术,它通过对模型中的权重矩阵进行低秩分解来减少可训练参数的数量。具体来说,对于模型中的任意一个权重矩阵W,LoRA会增加一个“旁支”,先用一个Linear层A将数据从dd维降到rr维(其中rr为LoRA的重要超参数,一般会远远小于dd),再用一个Linear层B将数据从rr维变回dd维。在训练过程中,只训练这个“旁支”的参数,而原始的权重矩阵W则被冻结。这样做可以大大减少可训练参数的数量,从而降低计算复杂度和模型训练成本。实验表明,LoRA在保持模型性能的同时,可以将可训练参数的数量减少10000倍,GPU内存需求减少3倍。此外,LoRA还在RoBERTa、DeBERTa、GPT-2和GPT-3等模型上进行了验证,并表现出与全参数微调相当或更好的性能。

当然可以。PEFT,全称为Parameter-Efficient Fine-Tuning,即参数高效微调,是一种针对大型预训练模型(如LLM模型)的微调技术。其核心思想是在微调过程中,仅对模型中的一小部分参数进行调整,而保持大部分预训练参数不变。这样做的好处在于,可以大幅度减少微调所需的计算资源和存储空间,同时避免了全参数微调时可能出现的“灾难性遗忘”问题。

在PEFT中,被微调的参数通常是通过特定的方式选择的,以确保这些参数能够对新任务进行有效的学习。例如,一些方法可能会选择模型中的某些层或某些神经元进行微调,而保持其他部分不变。此外,还有一些方法会引入额外的参数来进行微调,但这些额外参数的数量通常远少于全参数微调所需的数量。

PEFT的优势在于其高效性和灵活性。由于只需要微调一小部分参数,因此PEFT可以在计算资源有限的情况下进行高效的模型适应。同时,由于保留了大部分预训练参数,PEFT还可以在一定程度上保持模型在原始任务上的性能,从而实现多任务学习的能力。

在实际应用中,PEFT已被广泛用于各种大型预训练模型的微调过程中。例如,在自然语言处理领域,PEFT已被用于BERT、RoBERTa、GPT等模型的微调。在图像识别领域,PEFT也被用于ResNet、VGG等模型的微调。实验结果表明,PEFT在保持模型性能的同时,可以显著减少微调所需的计算资源和存储空间。

总的来说,PEFT是一种高效且实用的大型预训练模型微调技术。它不仅可以降低模型微调的成本和难度,还可以提高模型在新任务上的性能。随着人工智能技术的不断发展,PEFT有望在更多领域得到广泛的应用和推广。

### 大模型微调训练的方法流程 #### 预训练阶段概述 在预训练阶段,大型模型会利用海量未标注的数据集进行训练,旨在让模型获取语言的基础统计特性广泛的知识。这一过程属于无监督学习范畴,在此过程中形成的基座模型具备了一定程度上的泛化预测能力[^4]。 #### 微调的重要性及其目的 针对特定应用场景的需求,直接采用未经调整的预训练模型往往难以达到最优性能。因此,有必要对这些预训练好的基座模型实施进一步优化——即所谓的“微调”。通过对自有领域内有代表性的数据集执行针对性更强的学习迭代,可以使模型更好地贴合实际业务需求并提高准确性[^2]。 #### 主要微调策略介绍 ##### LoRA(Low-Rank Adaptation) 这种方法基于大模型内部存在的低秩特性而设计,通过引入额外的小规模旁路矩阵来近似实现全面参数更新的效果。相比传统方式能够显著减少计算资源消耗的同时保持甚至超越原有精度水平。它不仅适用于自然语言处理任务中的大语言模型(LLMs),同样可以在图像生成等领域发挥重要作用[^3]。 ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, ) model = get_peft_model(model, lora_config) ``` ##### Prefix Tuning 该方案聚焦于仅改变输入序列前缀部分对应的嵌入向量表示形式来进行局部修正,而非改动整个网络架构或权重值本身。这种方式能够在不破坏原始模型结构的前提下有效提升某些特殊场景下的表达力适应度。 ```python prefix_tuning_config = PrefixTuningConfig(num_virtual_tokens=30) model = get_peft_model(model, prefix_tuning_config) ``` #### 完整微调工作流描述 从整体上看,一个典型的大模型微调项目通常遵循如下几个关键环节: - **准备高质量领域专用语料库**:收集整理足够数量级且具有鲜明行业特色的样本资料作为后续训练素材; - **加载已有的预训练模型实例**:选取合适版本号的开源框架所提供的基础版大模型,并将其初始化为当前环境内的可用对象; - **应用选定的技术手段开展具体操作**:依据实际情况决定采取何种类型的微调措施(如上述提到的LoRA或是Prefix Tuning),编写相应配置文件及脚本代码片段; - **评估改进后的成果质量**:借助验证测试集合衡量经过一轮或多轮次迭代之后的新版本相较于初始状态究竟取得了哪些进步之处;最后部署上线至生产环境中投入使用之前还需经历严格的审核批准程序确保安全可靠运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值