浅谈全量微调和PEFT高效微调(LoRA)

浅谈全量微调和LoRA微调

全量微调Full Fine-Tuning

全量微调是指在预训练的大型模型基础上调整所有层和参数,‌使其适应特定任务的过程。‌这一过程使用较小的学习率和特定任务的数据进行,‌可以充分利用预训练模型的通用特征

高效微调

高效微调(‌PEFT)‌是一种参数微调技术,‌它允许在预训练模型上仅微调少量或额外的模型参数,‌同时固定大部分预训练参数,‌从而显著降低训练成本。‌这种方法相比于全参数微调,‌在没有微调过的大语言模型上性能略差,‌但在已经微调过的模型上,‌性能接近

通俗理解全量微调与高效微调-LoRA微调

在这里插入图片描述


日常学习总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

保持成长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值